全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

代谢工程中途径和菌株改造的几种新技术

DOI: 10.11949/j.issn.0438-1157.20150641, PP. 2831-2837

Keywords: 代谢,生物工程,合成生物学,模块化优化,蛋白支架,动态调控,基因编辑

Full-Text   Cite this paper   Add to My Lib

Abstract:

代谢工程是生物学领域重要的发展方向,迄今为止已有20多年的发展历史。通过代谢工程手段对微生物进行遗传改造,可以实现一系列化合物的可持续生产,为能源及环境问题提供了有潜力的解决方案。最近几年代谢工程领域出现了一些最新技术,包括多变量的模块化优化技术、酶集结的支架技术、代谢流量的动态调控技术以及大规模基因编辑技术。本文对这些技术发展及应用进行了总结和介绍。

References

[1]  Lo T M, Teo W S, Ling H, Chen B, Kang A, Chang M W. Microbial engineering strategies to improve cell viability for biochemical production [J]. Biotechnol. Adv., 2013, 31: 903-914.
[2]  Yadav V G, De Mey M, Lim C G, Ajikumar P K, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice [J]. Metab. Eng., 2012, 14: 233-241.
[3]  Inokuma K, Liao J C, Okamoto M, Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping [J]. J. Biosci. Bioeng., 2010, 110: 696-701.
[4]  Becker J, Zelder O, Hfifner S, Schr?der H, Wittmann C. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production [J]. Metab. Eng., 2011, 13: 159-168.
[5]  Ajikumar P K, Xiao W H, Tyo K E J, Wang Y, Simeon F, Leonard E, Mucha O, Phon T H, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330: 70-74.
[6]  Xu P, Gu Q, Wang W, Wong L, Bower A G, Collins C H, Koffas M A. Modular optimization of multi-gene pathways for fatty acids production in E. coli [J]. Nat. Commun., 2013, 4: 1409.
[7]  Liu Y, Zhu Y, Li J, Shin H D, Chen R R, Du G, Liu L, Chen J. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production [J]. Metab. Eng., 2014, 23: 42-52.
[8]  Lin Y, Sun X, Yuan Q, Yan Y. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli [J]. Metab. Eng., 2014, 23: 62-69.
[9]  Wu J, Liu P, Fan Y, Bao H, Du G, Zhou J, Chen J. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine [J]. J. Biotechnol., 2013, 167: 404-411.
[10]  Wu J, Du G, Zhou J, Chen J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy [J]. Metab. Eng., 2013, 16: 48-55.
[11]  Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production [J]. Metab. Eng., 2013, 17: 42-50.
[12]  Dai Zhubo, Liu Yi, Huang Luqi, Zhang Xueli. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2012, 109(11): 2845-2853.
[13]  Miles E W. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel [J]. Chem. Rec., 2001, 1: 140-151.
[14]  Smith S, Tsai S C. The type Ⅰ fatty acid and polyketide synthases: a tale of two megasynthases [J]. Nat. Prod. Rep., 2007, 24: 1041-1072.
[15]  Dueber J E, Wu G C, Malmirchegini G R, Moon T S, Petzold C J, Ullal A V, Prather K L, Keasling J D. Synthetic protein scaffolds provide modular control over metabolic flux [J]. Nat. Biotechnol., 2009, 27: 753-759.
[16]  Moon T S, Dueber J E, Shiue E, Prather K L J. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli [J]. Metab. Eng., 2010, 12: 298-305.
[17]  Wilner O I, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Enzyme cascades activated on topologically programmed DNA scaffolds [J]. Nat. Nanotechnol., 2009, 4: 249-254.
[18]  Delebecque C J, Lindner A B, Silver P A, Aldaye F A. Organization of intracellular reactions with rationally designed RNA assemblies [J]. Science, 2011, 333: 470-474.
[19]  Zhou L, Zuo Z R, Chen X Z, Niu D D, Tian K M, Prior B A, Shen W, Shi G Y, Singh S, Wang Z X. Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli [J]. Curr. Microbiol., 2011, 62: 981-989.
[20]  Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, Estadilla J, Teisan S, Schreyer H B, Andrae S, Yang T H, Lee S Y, Burk M J, Van Dien S. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol [J]. Nat. Chem. Biol., 2011, 7: 445-452.
[21]  Williams T C, Averesch N J H, Winter G, Plan M R, Vickers C E, Nielsen L K, Kr?mer J O. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae [J]. Metab. Eng., 2015, 29: 124-134.
[22]  Zhou L, Niu D D, Tian K M, Chen X Z, Prior B A, Shen W, Shi G Y, Singh S, Wang Z X. Genetically switched D-lactate production in Escherichia coli [J]. Metab. Eng., 2012, 14: 560-568.
[23]  Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch [J]. Metab. Eng., 2014, 23: 175-184.
[24]  Farmer W R, Liao J C. Improving lycopene production in Escherichia coli by engineering metabolic control [J]. Nat. Biotechnol., 2000, 18: 533-537.
[25]  Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control [J]. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 11299-11304.
[26]  Urnov F D, Rebar E J, Holmes M C, Zhang H S, Gregory P D. Genome editing with engineered zinc finger nucleases [J]. Nat. Rev. Genet., 2010, 11: 636-646.
[27]  Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing [J]. Nat. Rev. Mol. Cell Biol., 2013, 14: 49-55.
[28]  Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation [J]. Annu. Rev. Genet., 2011, 45: 273-297.
[29]  DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Res., 2013, 41: 4336-4343.
[30]  Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nat. Biotech., 2013, 31: 233-239.
[31]  Jako?iūnas T, Bonde I, Herrg?rd M, Harrison S J, Kristensen M, Pedersen L E, Jensen M K, Keasling J D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metab. Eng., 2015, 28: 213-222.
[32]  Qi Lei S, Larson Matthew H, Gilbert Luke A, Doudna Jennifer A, Weissman Jonathan S, Arkin Adam P, Lim Wendell A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell, 152: 1173-1183.
[33]  Cheng A W, Wang H, Yang H, Shi L, Katz Y, Theunissen T W, Rangarajan S, Shivalila C S, Dadon D B, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system [J]. Cell Res., 2013, 23: 1163-1171.
[34]  Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes [J]. Cell, 2013, 154: 442-451.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133