全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

发酵粗甘油产乳酸的戊糖乳杆菌代谢进化

DOI: 10.11949/j.issn.0438-1157.20150868, PP. 3195-3203

Keywords: 代谢进化,乳酸,甘油,发酵,代谢,生化工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

以生物柴油产业的副产物粗甘油为底物,可降低乳酸发酵的生产成本。但是,粗甘油发酵生产乳酸存在菌体生长缓慢、菌浓较低、产酸速率和终产物浓度偏低等问题。以实验室筛选的一株戊糖乳杆菌(LactobacilluspentosusR3-8)为出发菌株进行代谢进化。通过在培养基中添加高浓度的粗甘油和乳酸,分别进行菌株耐底物和产物抑制的代谢进化。用粗甘油驯化的第60代菌株,可耐受130g·L-1的粗甘油,与出发菌株相比,生长速率提高,且生物量是原始菌株的1.23倍。用乳酸驯化的第50代菌株可耐受20g·L-1的乳酸,生物量比初始菌株提升了18%。驯化菌株的5L发酵罐分批发酵结果显示,以粗甘油驯化至60代的菌株的批次发酵水平相对较好,乳酸产量、甘油转化率以及生产强度分别为45.0g·L-1、0.989g·g-1和0.47g·L-1·h-1。以粗甘油驯化至60代的菌株进行补料分批发酵,乳酸终浓度为83.8g·L-1,比分批发酵提高了近1倍。

References

[1]  Mazumdar S, Clomburg J M, Gonzalez R. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol [J]. Appl. Environ. Microb., 2010, 76 (13): 4327-4336.
[2]  Hong An'an (洪安安), Cheng Keke (程可可), Sun Yan (孙燕), Chen Zhen (陈珍), Peng Feng (彭枫), Liu Canming (刘灿明), Liu Dehua (刘德华). Strain screening for bioconversion of glycerol to lactic acid and optimization of culture medium [J]. Microbiology China (微生物学通报), 2009, 36 (8): 1195-1199.
[3]  Hong A A, Cheng K K, Peng F, et al. Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid [J]. J.Chem. Technol. Biot., 2009, 84 (10): 1576-1581.
[4]  Tian Kangming (田康明), Zhou Li (周丽), Chen Xianzhong (陈献忠), Shen Wei (沈微), Shi Guiyang (石贵阳), Suren Singh, Lu Fuping (路福平), Wang Zhengxiang (王正祥). Temperature-switched high-efficiency D-lactate production from glycerol [J]. Chinese Journal of Biotechnology (生物工程学报), 2013, 29 (1): 111-114.
[5]  Tian Kangming, Chen Xianzhong, Shen Wei, Bernard A Prior, Shi Guiyang, Suren Singh, Wang Zhengxiang. High-efficiency conversion of glycerol to D-lactic acid with metabolically engineered Escherichia coli [J]. Afr. J. Biotec., 2012, 11 (21): 4860-4867.
[6]  Hofvendahl K, Hahn-Hfigerdal B. Factors affecting the fermentative lactic acid production from renewable resources [J]. Enzyme Microb. Tech., 2000, 26 (2): 87-107.
[7]  Zhang Xueli (张学礼). Twenty years development of metabolic engineering—a review [J]. Chinese Journal of Biotechnology (生物工程学报), 2009, 25 (9): 1285-1295.
[8]  Christensen B, Thykaer J, Nielsen J. Metabolic characterization of high-and low-yielding strains of Penicillium chrysogenum [J]. Appl. Microb. Biotec., 2000, 54 (2): 212-217.
[9]  Madison L L, Huisman G W. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic [J]. Microbiol. Mol. Biol. Rev., 1999, 63 (1): 21-53.
[10]  Park J H, Lee K H, Kim T Y, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation [J]. Proc. Natl. Acad. Sci. USA, 2007, 104 (19): 7797-7802.
[11]  Jarboe L R, Grabar T B, Yomano L P, Shanmugan K T, Ingram L O. Development of ethanologenic bacteria//Olsson L. Biofuels [M]. Berlin: Springer, 2007: 237-261.
[12]  Zhang Xueli, Kaemwich Jantama, Moore J C, Shanmugam K T, Ingram L O. Production of L-alanine by metabolically engineered Escherichia coli [J]. Appl. Microbiol. Biot., 2007, 77 (2): 355-366.
[13]  Kaemwich J, Zhang Xueli, Moore J C, Shanmugam K T, Svoronosand S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C [J]. Biotech. Bioeng., 2008, 101 (5): 881-893.
[14]  Kaemwich J, Haupt M J, Spyros A Svoronos, Zhang Xueli, Moore J C, Shanmugamand K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli that produce succinate and malate[J]. Biotech. Bioeng., 2008, 99 (5): 1140-1153.
[15]  Lee S J, Lee D Y, Kim T Y, Kim B H, Lee J, Lee S Y. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation [J]. Appl. Environ. Microbiol., 2005, 71: 7880-7887.
[16]  Glassner D A, Datta R. Process for the production and purification of succinic acid [P]: US, 5143834. 1992.
[17]  Meynial-Salles I, Dorotyn S, Soucaille P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity [J]. Biotech. Bioeng., 2007, 99 (1): 129-135.
[18]  Zhao Geng (赵耿). Study on the production of lactic acid by bioconversion of waste glycerol [D]. Quanzhou: Huaqiao University, 2010.
[19]  Basha S A, Gopal K R, Jebaraj S. A review on biodiesel production, combustion, emissions and performance [J]. Renew Sust. Energ. Rev., 2009, 13: 1628-1634.
[20]  Lin L, Zhou C, Saritporn V, Shen X, et al. Opportunities and challenges for biodiesel fuel [J]. Appl. Energ., 2011, 88: 2020-1031.
[21]  Rasal R M, Janorkar A V, Hirt D E. Poly (lactic acid) modifications [J]. Prog. Polym. Sci., 2010, 35 (3): 338-356.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133