Tan H W, Aziz A R A, Aroua M K. Glycerol production and its applications as a raw material: a review [J]. Renewable & Sustainable Energy Reviews, 2013, 27: 118-127.
[2]
Zhou C H, Zhao H, Tong D S, Wu L M, Yu W H. Recent advances in catalytic conversion of glycerol [J]. Catalysis Reviews-Science and Engineering, 2013, 55(4): 369-453.
[3]
Nakagawa Y, Tomishige K. Heterogeneous catalysis of the glycerol hydrogenolysis [J]. Catalysis Science & Technology, 2011, 1(2): 179-190.
[4]
ten Dam J, Hanefeld U. Renewable chemicals: dehydroxyla-tion of glycerol and polyols [J]. ChemSusChem, 2011, 4(8): 1017-1034.
[5]
Ruppert A M, Weinberg K, Palkovits R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals [J]. Angewandte Chemie-International Edition, 2012, 51(11): 2564-2601.
[6]
Zhou C H C, Beltramini J N, Fan Y X, Lu G Q M. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals [J]. Chemical Society Reviews, 2008, 37(3): 527-549.
[7]
Shi R J, Wang F, Tana, Li Y, Huang X M, Shen W J. A highly efficient Cu/La2O3 catalyst for transfer dehydrogenation of primary aliphatic alcohols [J]. Green Chemistry, 2010, 12(1): 108-113.
[8]
Sato S, Akiyama M, Takahashi R, Hara T, Inui K, Yokota M. Vapor-phase reaction of polyols over copper catalysts [J]. Applied Catalysis A: General, 2008, 347(2): 186-191.
[9]
Gong J L, Yue H R, Zhao Y J, Zhao S, Zhao L, Lü J, Wang S P, Ma X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0Cu+ sites [J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925.
[10]
Huang S Y, Wang Y, Wang Z Z, Yan B, Wang S P, Gong J L, Ma X B. Cu-doped zeolites for catalytic oxidative carbonylation: the role of Brfnsted acids [J]. Applied Catalysis A: General, 2012, 417: 236-242.
[11]
Huang Z W, Cui F, Kang H X, Chen J, Zhang X Z, Xia C G. Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis [J]. Chemistry of Materials, 2008, 20(15): 5090-5099.
[12]
Huang Z W, Cui F, Xue J J, Zuo J L, Chen J, Xia C G. Cu/SiO2 catalysts prepared by hom-and heterogeneous depo-sition-precipitation methods: texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol [J]. Catalysis Today, 2012, 183(1): 42-51.
[13]
Xia S X, Yuan Z L, Wang L N, Chen P, Hou Z Y. Catalytic production of 1,2-propanediol from glycerol in bio-ethanol solvent [J]. Bioresource Technology, 2012, 104: 814-817.
[14]
Vasiliadou E S, Lemonidou A A. Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis [J]. Applied Catalysis A: General, 2011, 396(1/2): 177-185.
[15]
Zhu S H, Gao X Q, Zhu Y L, Zhu Y F, Zheng H Y, Li Y W. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol [J]. Journal of Catalysis, 2013, 303: 70-79.
[16]
Yuan Z L, Wang L N, Wang J H, Xia S X, Chen P, Hou Z Y, Zheng X M. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts [J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 431-440.
[17]
Wang S A, Zhang Y C, Liu H C. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO composite catalysts: structural requirements and reaction mechanism [J]. Chemistry—An Asian Journal, 2010, 5(5): 1100-1111.
[18]
Yuan Z L, Wang J H, Wang L N, Xie W H, Chen P, Hou Z Y, Zheng X M. Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts [J]. Bioresource Technology, 2010, 101(18): 7088-7092.
[19]
Xia S X, Nie R F, Lu X Y, Wang L N, Chen P, Hou Z Y. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover [J]. Journal of Catalysis, 2012, 296: 1-11.
[20]
Bienholz A, Hofmann H, Claus P. Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: correlation between the copper surface area and the catalyst's activity [J]. Applied Catalysis A: General, 2011, 391(1/2): 153-157.
[21]
Wang X, Zhuang J, Chen J, Zhou K B, Li Y D. Thermally stable silicate nanotubes [J]. Angewandte Chemie: International Edition, 2004, 43(15): 2017-2020.
[22]
Wang Y Q, Wang G Z, Wang H Q, Cai W P, Zhang L D. One-pot synthesis of nanotube-based hierarchical copper silicate hollow spheres [J]. Chemical Communications, 2008, (48): 6555-6557.
[23]
Yue H R, Zhao Y J, Zhao S, Wang B, Ma X B, Gong J L. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions [J]. Nature Communications, 2013, 4.
[24]
van der Grift C J G, Elberse P A, Mulder A, Geus J W. Preparation of silica-supported copper catalysts by means of deposition-precipitation [J]. Applied Catalysis, 1990, 59(1): 275-289.
[25]
Chen L F, Guo P J, Qiao M H, Yan S R, Li H X, Shen W, Xu H L, Fan K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol [J]. Journal of Catalysis, 2008, 257(1): 172-180.
[26]
Huang Z W, Cui F, Kang H X, Chen J, Xia C G. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydro-genolysis of glycerol to 1,2-propanediol: effect of residual sodium [J]. Applied Catalysis A: General, 2009, 366(2): 288-298.
[27]
Vasiliadou E S, Lemonidou A A. Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst [J]. Chemical Engineering Journal, 2013, 231: 103-112.
[28]
Nakagawa Y, Ning X H, Amada Y, Tomishige K. Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2 [J]. Applied Catalysis A: General, 2012, 433: 128-134.
[29]
Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst [J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 117-127.
[30]
Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water [J]. Applied Catalysis B: Environmental, 2010, 94(3/4): 318-326.
[31]
Copeland J R, Santillan I A, Schimming S M, Ewbank J L, Sievers C. Surface interactions of glycerol with acidic and basic metal oxides [J]. Journal of Physical Chemistry C, 2013, 117(41): 21413-21425.