全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

FCC提升管反应器中颗粒聚团对裂化反应的影响

DOI: 10.11949/j.issn.0438-1157.20150792, PP. 2920-2928

Keywords: 催化裂化,颗粒聚团,反应,数值模拟,数值分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对气固流动体系颗粒聚团实验现象分析的基础上,以减压馏分油裂化反应为例,对反应器中最常见的球形和椭球形聚团上的流动、传热和反应过程进行了模拟计算,得到了聚团内外油气和催化剂颗粒的速度分布、温度分布、浓度分布以及反应速率分布。研究结果表明,催化剂颗粒聚团的存在阻碍了油气与催化剂颗粒的充分接触,进而造成系统内速度和温度的不均匀分布,影响了裂化反应的发生,使得有颗粒聚团时的一次反应速率明显低于无聚团时的反应速率,颗粒聚团显著影响了油气在颗粒上的反应时间,最终导致气体和焦炭产率升高,对裂化反应产品收率分布十分不利。

References

[1]  Theologos K N, Nikou I D, Lygeros A I, et al. Simulation and design of fluid catalytic-cracking riser-type reactors[J]. AIChE Journal, 1997, 43(2):486-494.
[2]  Gao J, Xu C, Lin S, et al. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors [J]. AIChE Journal, 1999, 45(5):1095-1113.
[3]  Das A K, Baudrez E, Marin G B, et al. Three-dimensional simulation of a fluid catalytic cracking riser reactor[J]. Industrial & Engineering Chemistry Research, 2003, 42(12):2602-2617.
[4]  Nayak S V, Joshi S L, Ranade V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J]. Chemical Engineering Science, 2005, 60(22):6049-6066.
[5]  Gupta A, Subba Rao D. Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization [J]. Chemical Engineering Science. 2001, 56(15):4489-4503.
[6]  Pareek V K, Adesina A A, Srivastava A, et al. Modeling of a non-isothermal FCC riser [J]. Chemical Engineering Journal, 2003, 92(1/2/3): 101-109.
[7]  Souza J A, Vargas J V C, Von Meien O F, et al. A two-dimensional model for simulation, control, and optimization of FCC risers [J]. AIChE Journal, 2006, 52(5):1895-1905.
[8]  Kumar V, Reddy A S K. Why FCC riser is taller than model predictions?[J]. AIChE Journal, 2011, 57(10): 2917-2920.
[9]  Ouyang S, Li X G, Potter O E. Circulating fluidized bed as a catalytic reactor: experimental study [J]. AIChE Journal, 1995, 41(6): 1534-1542.
[10]  Breault R W. A review of gas-solid dispersion and mass transfer coefficient correlations in circulating fluidized beds [J]. Powder Technology, 2006, 163(1): 9-17.
[11]  Breault R W, Guenther C P. Mass transfer in the core-annular and fast fluidization flow regimes of a CFB [J]. Powder Technology, 2009, 190(3): 385-389.
[12]  Breault R W, Guenther C. Mass transfer coefficient prediction method for CFD modeling of riser reactors [J]. Powder Technology, 2010, 203(1): 33-39.
[13]  Chalermsinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser (Ⅰ): Estimate of mass transfer coefficient [J]. Chemical Engineering Science, 2009, 64(6): 1195-1211.
[14]  Chalermsinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser (Ⅱ): Computation of mass transfer coefficient with chemical reaction [J]. Chemical Engineering Science, 2009, 64(6): 1212-1222.
[15]  Prajongkan Y, Piumsomboon P, Chalermsinsuwan B. Computation of mass transfer coefficient and Sherwood number in circulating fluidized bed downer using computational fluid dynamics simulation [J]. Chemical Engineering and Processing: Process Intensification, 2012, 59: 22-35.
[16]  Subbarao D. A cluster model for mass transfer in risers [J]. Sci. Techno., 2008, 3: 131.
[17]  Li Hongzhong, Xia Yashen, Tung Y, Mooson Kwauk. Micro-visualisation of two-phase flow structure in a fast-fluidised bed by micrograph transducer//Basu P, Horio M, Hasatani M. Circulating Fluidized Bed Technology Ⅳ[M]. Pergamon Press, 1990: 183-188.
[18]  Davidson J F. Circulating fluidized bed hydrodynamics [J]. Powder Technology, 2000, 113: 249.
[19]  Rhodes M, Mineo H, Hirama T. Particle motion at the wall of a circulating fluidized bed [J]. Powder Technology, 1992, 70: 207-214.
[20]  Lim K S, Zhou J, Finley C, et al. Cluster descending velocity at the wall of circulating fluidized bed risers//5th International Conference on Circulating Fluidized Beds[C]. 1996.
[21]  Guenther C, Breault R. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed [J]. Powder Technology, 2007, 173(3): 163-173.
[22]  Horio M, Kuroki H. 3-Dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds [J]. Chemical Engineering Science, 1994, 49(15): 2413-2421.
[23]  O'brien T J, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed//4th International CFB Conference[C]. 1993.
[24]  Mostoufi N, Chaouki J. Flow structure of the solids in gas-solid fluidized beds [J]. Chemical Engineering Science, 2004, 59: 4217-4227.
[25]  Xia Yashen(夏亚沈), Li Hongzhong(李洪钟). Estimation of the particle agglomeration size in fast fluidized bed [J]. Chemical Engineering and Metallurgy(化工冶金), 1993, 14(3): 245-251.
[26]  Qi Xiaobao(漆小波). Experimental study on the particle concentration of clusters in circulating fluidized bed riser [J]. Journal of Sichuan University: Engineering Sciences(四川大学学报:工程科学版), 2005, (5): 46-50.
[27]  Pitault I, Nevicato D, Forissier M, et al. Kinetic model based on a molecular description for catalytic cracking of vacuum gas oil [J]. Chemical Engineering Science, 1994, 49(24, Part A):4249-4262.
[28]  Wu C, Cheng Y, Jin Y. Understanding riser and downer based fluid catalytic cracking processes by a comprehensive two-dimensional reactor model [J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 12-26.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133