Zhao X, Hayner C M, Kung M C, Kung H H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries [J]. Adv. Energy Mater., 2011, 1(6): 1079-1084.
[2]
Xu Y X, Wu Q, Sun Y Q, Bai H, Shi G Y. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels [J]. ACS Nano, 2010, 4(12): 7358-7362.
[3]
Sheng K X, Xu Y X, Li C, Shi G Q. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide [J]. New Carbon Mater., 2011, 26(1): 9-15.
[4]
Lin Y M, Valdes-Garcia A, Han S J, Farmer D B, Meric I, Sun Y N, Wu Y Q, Dimitrakopoulos C, Grill A, Avouris P, Jenkins K A. Wafer-scale graphene integrated circuit [J]. Science, 2011, 332(6035): 1294-1297.
[5]
Ma J, Meng Q S, Michelmore A, Kawashima N, Izzuddin Z, Bengtsson C, Kuan H C. Covalently bonded interfaces for polymer/graphene composites [J]. J. Mater. Chem. A, 2013, 1 (13): 4255-4264.
[6]
Kandare E, Khatibi A A, Yoo S H, Wang R Y, Ma J, Olivier P, Gleizes N, Wang C H. Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions [J]. Compos Part A-Appl S., 2015, 69: 72-82.
[7]
Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K. Graphene: corrosion-inhibiting coating [J]. ACS Nano, 2012, 6(2): 1102-1108.
[8]
Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6(3): 183-191.
[9]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.
[10]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals [J]. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451-10453.
[11]
Katsnelson M I, Novoselov K S. Graphene: new bridge between condensed matter physics and quantum electrodynamics [J]. Solid State Commun., 2007, 143(1/2): 3-13.
[12]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Crigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[13]
Ruoff R S. Calling all chemists [J]. Nat Nanotechnol., 2008, 3(1): 10-11.
[14]
Geim A K. Graphene: status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
[15]
Brumfiel G. Graphene gets ready for the big time [J]. Nature, 2009, 458(7237): 390-391.
[16]
Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-204.
[17]
Chae H K, Siberio-Pérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523-527.
[18]
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene [J]. Nano Lett., 2008, 8(3): 902-907.
[19]
Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K J, Cai W W, Balandin A A, Ruoff R S. Thermal conductivity of isotopically modified graphene [J]. Nat. Mater., 2012, 11(3): 203-207.
[20]
Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.
[21]
van den Brink J. Graphene-from strength to strength [J]. Nat. Nanotechnol., 2007, 2(4): 199-201.
[22]
Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene [J]. Chem. Rev., 2010, 110(1): 132-145.
[23]
Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001) [J]. Adv. Mater., 2009, 21( 27 ): 2777-2780.
[24]
Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium [J]. Nat. Mater., 2008, 7(5): 406-411.
[25]
Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat. Nanotechnol., 2009, 4(4): 217-224.
[26]
Park K H, Kim B H, Song S H, Kwon J Y, Kong B S, Kang K, Jeon S. Exfoliation of non-oxidized graphene flakes for scalable conductive film [J]. Nano Lett., 2012, 12(6): 2871-2876.
[27]
Geng X M, Guo Y F, Li D F, Li W W, Zhu C, Wei X F, Chen M L, Gao S, Qiu S Q, Gong Y P, Wu L Q, Long M S, Sun M T, Pan G B, Liu L W. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene [J]. Scientific Reports, 2013, 3: 1134-1139.
[28]
Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat. Nanotechnol., 2008, 3(9): 563-569.
[29]
Pykal M, Safarova K, Siskova K M, Jure?ka P, Bourlinos A B, Zbo?il R, Otyepka M. Lipid enhanced exfoliation for production of graphene nanosheets [J]. J. Phys. Chem. C, 2013, 117(22): 11800-11803.
[30]
Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A O, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O'Brien S E, MsGrire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids [J]. Nat. Mater., 2014, 13(6): 624-630.
[31]
Kim K S, Zhao Y, Jang H K, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230): 706-710.
[32]
Hao Y, Bharathi M S, Wang L, Liu Y G, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S. The role of surface oxygen in the growth of large single-crystal grapheme on copper [J]. Science, 2013, 342(6): 720-723.
[33]
Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339.
[34]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45 (7): 1558-1565.
[35]
He D F, Shen L M, Zhang X Y, Bao N Z, Kung H H. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions [J]. AIChE J., 2014, 60(8): 2757-2764.
[36]
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Precise and ultrafast molecular sieving through graphene oxide membranes [J]. Science, 2014, 343(6172): 752-754.
[37]
Liu Y L, Mi B X. Effects of organic macromolecular conditioning on gypsum scaling of forward osmosis membranes [J]. J. Membrane Sci., 2014, 450: 153-161.
[38]
Zhu Y W, Murali S T, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: synthesis, properties, and applications [J]. Adv. Mater., 2010, 22(46): 5226-5226.
[39]
Yang N L, Zhai J, Wang D, Chen Y S, Jiang L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells [J]. ACS Nano, 2010, 4(2): 887-894.
[40]
Velten J A, Carretero-González J, Castillo-Martínez E, Bykova J, Cook A, Baughman R, Zakhidov A. Photoinduced optical transparency in dye-sensitized solar cells containing graphene nanoribbons [J]. J. Phys. Chem. C, 2011, 115(50): 25125-25131.
[41]
Zhao X, Hayner C M, Kung M C, Kung H H. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries [J].Chem. Commun.,2012, 48(79): 9909-9911.
[42]
Lee J K, Smith K B, Hayner C M, Kung H H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes [J]. Chem. Commun., 2010, 46(12): 2025-2027.
[43]
Pan Bingli(潘炳力), Xing Yali(邢雅丽), Liu Jingchao(刘敬超), et al. Tribological behavior of PPS coating modified by graphene [J]. Tribology(摩擦学学报), 2011, 31(2): 150-155.
[44]
Yu A P, Ramesh P, Sun X B, Bekyarova E, Itkis M E, Haddon R C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet- carbon nanotube filler for epoxy composites [J]. Adv. Mater., 2008, 20(24): 4740-4744.
[45]
Lee W K, Haydell M, Robinson J T, Laracuente A R, Cimpoiasu E, King W P, Sheehan P E. Nanoscale reduction of graphene fluoride via thermochemical nanolithography [J]. ACS Nano, 2013, 7(7): 6219-6224.
[46]
Mooson Kwauk(郭慕孙). Process engineering [J]. The Chinese Journal of Process Engineering(过程工程学报), 2001, 1(1): 2-7.
[47]
Li Hongzhong(李洪钟). Focus attention on structure, interface and multi-scale issues to open up new mileage of chemical engineering [J]. The Chinese Journal of Process Engineering(过程工程学报), 2006, 6(6): 991-996.
[48]
Li Jinghai(李静海), Hu Ying(胡英), Chuan Yuan(袁权). Mesoscience: exploring old problems from a new angle [J]. Scientia Sinica Chimica(中国科学化学), 2014, 44(3): 277-281.
[49]
Xu Nanping(徐南平), Shi Jun(时钧). Progress in material-oriented chemical engineering of China [J]. Journal of Chemical Industry and Engineering(China) (化工学报), 2003, 54(4): 423-426.
[50]
Jin Wanqin(金万勤), Lu Xiaohua(陆小华), Xu Nanping(徐南平). Advances in Materials-Oriented Chemical Engineering(材料化学工程进展)[M]. Beijing: Chemical Industry Press, 2007: 3-8.
[51]
Zhu Yudan(朱育丹), Lu Xiaohua(陆小华), Guo Xiaojin(郭晓静), Lü Linghong(吕玲红). Preliminary discussion on scientific connotation and research method of aterial-oriented chemical engineering: understanding materials based on confined interfacial fluid behavior on mesoscale [J]. CIESC Journal (化工学报), 2013, 64(1): 148-154.