全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

预处理条件及金属离子改性对H-MOR分子筛的DME羰基化性能影响

DOI: 10.11949/j.issn.0438-1157.20150882, PP. 3504-3510

Keywords: 丝光沸石,二甲醚,羰基化,金属离子改性

Full-Text   Cite this paper   Add to My Lib

Abstract:

详细了考察不同预处理条件及反应温度对丝光沸石(H-MOR)分子筛二甲醚(DME)羰基化制取醋酸甲酯(MA)的催化活性和稳定性的影响。研究结果表明,在氮气气氛中500℃预处理2h、反应温度为180℃时H-MOR催化剂的DME转化率最高,可达20.5%。虽然提高反应温度可以进一步提高催化剂的DME转化率,但易产生积炭,快速失活。此外,还考察了金属离子改性对H-MOR催化剂DME羰基化活性的影响。采用离子交换法制备了Cu、Ni、Fe和Co等金属离子交换的H-MOR催化剂,活性测试结果表明:IE-Cu催化剂活性最好,DME转化率为36.9%;IE-Ni催化剂的活性最稳定,DME转化率稳定在24.5%。还原温度对IE-Cu催化剂DME羰基化活性有重要影响,450℃还原后的IE-Cu催化剂活性要明显高于300℃还原的IE-Cu。

References

[1]  Cardona C A, Sánchez ó J. Fuel ethanol production: process design trends and integration opportunities [J]. Bioresource Technology, 2007, 98(12): 2415-2457.
[2]  Atkins M P, Smith D J H, Westlake D J. Montmorillonite catalysts for ethylene hydration [J]. Clay Miner., 1983, 18: 423-429.
[3]  Novotny M. Pre-pressuring methanol-cobalt with carbon monoxide in homologation of methanol[P]: US, 4283582. 1981-8-11.
[4]  Francoisse P B, Thyrion F C. Methanol to ethanol by homologation: kinetic approach [J]. Industrial & Engineering Chemistry Product Research and Development, 1983, 22(4): 542-48.
[5]  Ichikawa M, Fukushima T. Mechanism of syngas conversion into C2-oxygenates such as ethanol catalysed on a SiO2-supported Rh-Ti catalyst [J]. Journal of the Chemical Society, Chemical Communications, 1985, (6): 321-323.
[6]  Mei D, Rousseau R, Kathmann S M, Glezakou V A, Engelhard M H, Jiang W, Wang C M, Gerber M A, Stevens D J. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study [J]. Journal of Catalysis, 2010, 271(2): 325-342.
[7]  Cheung P, Bhan A, Sunley G J, Iglesia E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites [J]. Angewandte Chemie International Edition, 2006, 45(10): 1617- 1620.
[8]  Bhan A, Allian A D, Sunley G J, Law D J, Iglesia E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls [J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924.
[9]  Cheung P, Bhan A, Sunley G J, Law D J, Iglesia E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolite [J]. Journal of Catalysis, 2007, 245(1): 110-123.
[10]  Bhan A, Iglesia E. A link between reactivity and local structure in acid catalysis on zeolites [J]. Accounts of Chemical Research, 2008, 41(4): 559-567.
[11]  Li X G, San X G, Zhang Y, Ichii T, Meng M, Tan Y, Tsubaki N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts [J]. ChemSusChem, 2010, 3(10): 1192-1199.
[12]  Yang G H, San X G, Jiang N, Tanaka Y, Li X, Jin Q, Tao K, Meng F, Tsubaki N. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts [J]. Catalysis Today, 2011, 164(1): 425-428.
[13]  Claus P, Lucas M, Lücke B, Berndt T, Birke P. Selective hydrogenolysis of methyl and ethyl acetate in the gas phase on copper and supported group Ⅷ metal catalysts [J]. Applied Catalysis A: General, 1991, 79(1): 1-18.
[14]  Kenvin J C, White M G. Supported catalysts prepared from mononuclear copper complexes: catalytic properties [J]. Journal of Catalysis, 1992, 135(1): 81-91.
[15]  Zhang X, Li Y P, Qiu S B, Xu Q. Synthesis of methyl acetate by dimethyl ether carbonylation over Cu/HMOR: effect of catalyst preparation method [J]. Chinese Journal of Chemical Physics, 2013, 26(1): 77-82.
[16]  Zhang X, Li Y P, Qiu S B, Wang T J, Ma L L, Zhang Q, Ding M Y. Effect of calcination temperature on catalytic activity and textual property of Cu/HMOR catalysts in dimethyl ether carbonylation reaction [J]. Chinese Journal of Chemical Physics, 2013, 26(2): 220-224.
[17]  Wegman R W. Vapour phase carbonylation of methanol or dimethyl ether with metal-ion exchanged heteropoly acid catalysts [J]. Journal of the Chemical Society, Chemical Communications, 1994, (8): 947-948.
[18]  Sardesai A, Tartamella T, Lee S. Synthesis of hydrocarbons from dimethyl ether: selectivities towards light hydrocarbons [J]. Fuel Science & Technology International, 1996, 14(5): 703-712.
[19]  Inui T, Phatanasri S, Matsuda H. Highly selective synthesis of ethene from methanol on a novel nickel-silicoaluminophosphate catalyst [J]. Journal of the Chemical Society, Chemical Communications, 1990, (3): 205-206.
[20]  Xue H, Huang X, Ditzel E, Zhan E, Ma M, Shen W. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510-11515.
[21]  Zecchina A, Geobaldo F, Spoto G, Bordiga S, Ricchiardi G, Buzzoni R, Petrini G. FTIR investigation of the formation of neutral and ionic hydrogen-bonded complexes by interaction of H-ZSM-5 and H-mordenite with CH3CN and H2O: Comparison with the H-NAFION superacidic system [J]. The Journal of Physical Chemistry, 1996, 100(41): 16584-16599.
[22]  Boronat M, Martínez-Sánchez C, Law D, Corma A. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO [J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323.
[23]  Liu Y, Zhao N, Xian H, Cheng Q, Tan Y, Tsubaki N, Li X. Facilely synthesized H-mordenite nano-sheet assembly for carbonylation of dimethyl ether [J]. ACS Applied Materials & Interfaces, 2015, 7: 8398-8403.
[24]  Zhan H, Huang S, Li Y, Lv J, Wang S, Ma X. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR [J]. Catalysis Science & Technology, 2015, (5): 4378-4389. DOI: 10.1039/C5CY00460H.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133