全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

工程化酿酒酵母合成植物三萜类化合物

DOI: 10.11949/j.issn.0438-1157.20150914, PP. 3350-3356

Keywords: 三萜类化合物,皂苷,β-香树脂醇,CYP450氧化酶,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

三萜类化合物如甘草次酸、皂苷等是许多药物在细胞内发挥药理活性的主要存在形式,可作为药物的主要活性成分,有些还可作为甜味剂等。但是萜类化合物在天然植株中含量很低,不能很好地对其开发和利用。随着萜类物质代谢中关键酶的发现,整个萜类代谢途径变得清晰。近年来合成生物学快速发展,为利用微生物发酵生产三萜化合物奠定了基础。综述了酿酒酵母中三萜化合物的合成途径及在此途径中起重要作用的细胞色素单氧化酶的研究进展。

References

[1]  Zheng X, Xu H, Ma X, Zhan R, Chen W. Triterpenoid saponin biosynthetic pathway profiling and candidate gene mining of the Ilex asprella root using RNA-Seq [J]. International Journal of Molecular Sciences, 2014, 15(4): 5970-5987.
[2]  Misra R C, Maiti P, Chanotiya C S, Shanker K, Ghosh S. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil [J]. Plant Physiology, 2014, 164(2): 1028-1044.
[3]  Li Y, Luo H M, Sun C, Song J Y, Sun Y Z, Wu Q, Wang N, Yao H, Steinmetz A, Chen S L. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics, 2010, 11: 268.
[4]  Naoumkina M A, Modolo L V, Huhman D V, Urbanczyk-Wochniak E, Tang Y, Sumner L W, Dixon R A. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula [J]. Plant Cell, 2010, 22(3): 850-866.
[5]  Ramilowski J A, Sawai S, Seki H, Mochida K, Yoshida T, Sakurai T, Muranaka T, Saito K, Daub C O. Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals [J]. Plant & Cell Physiology, 2013, 54(5): 697-710.
[6]  Pollier J, Morreel K, Geelen D, Goossens A. Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry [J]. Journal of Natural Products, 2011, 74(6): 1462-1476.
[7]  Jensen K, Moller B L. Plant NADPH-cytochrome P450 oxidoreductases [J]. Phytochemistry, 2010, 71(2/3): 132-141.
[8]  Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallstrom B M, Petranovic D, Nielsen J. Biofuels: altered sterol composition renders yeast thermotolerant [J]. Science, 2014, 346(6205): 75-78.
[9]  Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense [J]. Plant Physiology, 2005, 139(1): 341-352.
[10]  Yan X, Fan Y, Wei W, Wang P, Liu Q, Wei Y, Zhang L, Zhao G, Yue J, Zhou Z. Production of bioactive ginsenoside compound K in metabolically engineered yeast [J]. Cell Research, 2014, 24(6): 770-773.
[11]  Kiso Y, Kato O, Hikino H. Assay methods for antihepatotoxic activity using peroxide-induced cytotoxicity in primary cultured hepatocytes1 [J]. Planta Medica, 1985, 51(1): 50-52.
[12]  Pompei R, Flore O, Marccialis M A, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles [J]. Nature, 1979, 281(5733): 689-690.
[13]  Park H Y, Park S H, Yoon H K, Han M J, Kim D H. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide [J]. Archives of Pharmacal Research, 2004, 27(1): 57-60.
[14]  Okamoto H, Yoshida D, Saito Y, Mizusaki S. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis by sweetening agents and related compounds [J]. Cancer Letters, 1983, 21(1): 29-35.
[15]  Kitagawa I. Licorice root - a natural sweetener and an important ingredient in Chinese medicine [J]. Pure and Applied Chemistry, 2002, 74(7): 1189-1198.
[16]  Nose M, Ito M, Kamimura K, Shimizu M, Ogihara Y. A comparison of the antihepatotoxic activity between glycyrrhizin and glycyrrhetinic acid [J]. Planta Medica, 1994, 60(2): 136-139.
[17]  Zhang W, Popovich D G. Effect of soyasapogenol A and soyasapogenol B concentrated extracts on Hep-G2 cell proliferation and apoptosis [J]. Journal of Agricultural and Food Chemistry, 2008, 56(8): 2603-2608.
[18]  Smith J D, Salyer J, Esawarnanadam S, Lee S O. Hypocholesterolemic effects of soyasaponins and soyasapogenol B [J]. The FASEB Journal, 2011, 25: 980.6.
[19]  Connor M R, Atsumi S. Synthetic biology guides biofuel production [J]. Journal of Biomedicine and Biotechnology, 2010, 2010: 541698.
[20]  Baez A, Cho K M, Liao J C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal [J]. Applied Microbiology and Biotechnology, 2011, 90(5): 1681-1690.
[21]  Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli [J]. Applied Environmental Microbiology, 2011, 77(9): 2905-2915.
[22]  Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production [J]. Metabolic Engineering, 2013, 16: 1-10.
[23]  Steen E J, Kang Y S, Bokinsky G, Hu Z H, Schirmer A, Mcclure A, Del Cardayre S B, Keasling J D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass [J]. Nature, 2010, 463(7280): 559-U182.
[24]  Dai Z B, Wang B B, Liu Y, Shi M Y, Wang D, Zhang X N, Liu T, Huang L Q, Zhang X L. Producing aglycons of ginsenosides in bakers' yeast [J]. Science Reports, 2014, 4: 3698.
[25]  Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima E O, Akashi T, Aoki T, Saito K, Muranaka T. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin [J]. Plant Cell, 2011, 23(11): 4112-4123.
[26]  Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204-14209.
[27]  Schopfer C R, Kochs G, Lottspeich F, Ebel J. Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.) [J]. FEBS Letters, 1998, 432(3): 182-186.
[28]  Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens [J]. Plant & Cell Physiology, 2001, 42(12): 1338-1344.
[29]  Mizutani M, Ohta D, Sato R. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta [J]. Plant Physiology, 1997, 113(3): 755-763.
[30]  Humphreys J M, Hemm M R, Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10045-10050.
[31]  Nair R B, Xia Q, Kartha C J, Kurylo E, Hirji R N, Datla R, Selvaraj G. Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast [J]. Plant Physiology, 2002, 130(1): 210-220.
[32]  Schoendorf A, Rithner C D, Williams R M, Croteau R B. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1501-1506.
[33]  Moses T, Pollier J, Faizal A, Apers S, Pieters L, Thevelein J M, Geelen D, Goossens A. Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata [J]. Molecular Plant, 2015, 8(1): 122-135.
[34]  Fukushima E O, Seki H, Sawai S, Suzuki M, Ohyama K, Saito K, Muranaka T. Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast [J]. Plant & Cell Physiology, 2013, 54(5): 740-749.
[35]  Moses T, Pollier J, Almagro L, Buyst D, Van Montagu M, Pedreno M A, Martins J C, Thevelein J M, Goossens A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16alpha hydroxylase from Bupleurum falcatum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1634-1639.
[36]  Renault H, Bassard J E, Hamberger B, Werck-Reichhart D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges [J]. Current Opinion in Plant Biology, 2014, 19: 27-34.
[37]  Yu F, Thamm A M, Reed D, Villa-Ruano N, Quesada A L, Gloria E L, Covello P, De Luca V. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis [J]. Phytochemistry, 2013, 91: 122-127.
[38]  Fukushima E O, Seki H, Ohyama K, Ono E, Umemoto N, Mizutani M, Saito K, Muranaka T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis [J]. Plant & Cell Physiology, 2011, 52(12): 2050-2061.
[39]  Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C Y, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2006, 440(7086): 940-943.
[40]  Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, Mcphee D, Leavell M D, Tai A, Main A, Eng D, Polichuk D R, Teoh H, Reed D W, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens K W, Fickes S, Galazzo J, Gaucher S P, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade L F, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello P S, Keasling J D, Reiling K K, Renninger N S, Newman J D. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532.
[41]  Ajikumar P K, Xiao W H, Tyo K E J, Wang Y, Simeon F, Leonard E, Mucha O, Phon T H, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74.
[42]  Noskov V N, Karas B J, Young L, Chuang R Y, Gibson D G, Lin Y C, Stam J, Yonemoto I T, Suzuki Y, Andrews-Pfannkoch C, Glass J I, Smith H O, Hutchison C A, Venter J C, Weyman P D. Assembly of large, high G plus C bacterial DNA fragments in yeast [J]. ACS Synthetic Biology, 2012, 1(7): 267-273.
[43]  Wingler L M, Cornish V W. Reiterative recombination for the in vivo assembly of libraries of multigene pathways [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15135-15140.
[44]  Jakounas T, Sonde I, Herrgard M, Harrison S J, Kristensen M, Pedersen L E, Jensen M K, Keasling J D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 213-222.
[45]  Bozak K R, O'keefe D P, Christoffersen R E. Expression of a ripening-related avocado (Persea americana) cytochrome P450 in yeast [J]. Plant Physiology, 1992, 100(4): 1976-1981.
[46]  Siminszky B, Corbin F T, Ward E R, Fleischmann T J, Dewey R E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1750-1755.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133