Olah G A, Goeppert A, Surya Prakash G K. Beyond Oil and Gas: The Methanol Economy [M]. Weinheim:Wiley-VCH, 2006.
[2]
Breen J P, Ross J R H. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts [J]. Catal. Today, 1999, 51: 521-533.
[3]
Liu H S, Song C J, Zhang L, Zhang J J, Wang H J, Wilkinson D P. A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155: 95-110.
[4]
Behrens M, Studt F, Kasatkin I, Kühl S, H?vecker M, Pedersen F A, Zander S, Girgsdies F, Kurr P, Kniep B L, Tovar M, Fischer R W, N?rskov J K, Schl?gl R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts [J]. Science, 2012, 336: 893-897.
[5]
Ertl G, Kn?zinger H, Schüth F, Weitkamp J. Handbook of Heterogeneous Catalysis[M]. Weinheim: Wiley-VCH, 2008:2920-2949.
[6]
Tsubaki N, Ito M, Fujimoto K. A new method of low-temperature methanol synthesis [J]. J. Catal., 2001, 197: 224-227.
[7]
Fan L, Sakaiya Y, Fujimoto K. Low-temperature methanol synthesis from carbon dioxide and hydrogen via formic ester [J]. Appl. Catal., A: Gen., 1999, 180: L11-L13.
[8]
Zeng J Q, Fujimoto K, Tsubaki N. A new low-temperature synthesis route of methanol: catalytic effect of the alcoholic solvent [J]. Energy Fuels, 2002, 16: 83-86.
[9]
Zeng J Q, Tsubaki N, Fujimoto K. The promoting effect of alcohols in a new process of low-temperature synthesis of methanol from CO/CO2/H2 [J]. Fuel, 2002, 81: 125-127.
[10]
Reubroycharoen P, Vitidsant T, Yoneyama Y, Tsubaki N. Development of a new low-temperature methanol synthesis process [J]. Catal. Today, 2004, 89: 447-454.
[11]
Tsubaki N, Zeng J Q, Yoneyama Y, Fujimoto K. Continuous synthesis process of methanol at low temperature from syngas using alcohol promoters [J]. Catal. Commun., 2001, 2: 213-217.
[12]
Reubroycharoen P, Yamagami T, Vitidsant T, Yoneyama Y, Ito M, Tsubaki N. Continuous low-temperature methanol synthesis from syngas using alcohol promoters [J]. Energy Fuels, 2003, 17: 817-821.
[13]
Bao J, Liu Z L, Zhang Y, Tsubaki N. Preparation of mesoporous Cu/ZnO catalyst and its application in low-temperature methanol synthesis [J]. Catal. Commun., 2008, 9: 913-918.
[14]
Yang R Q, Yu X C, Zhang Y, Li W Z, Tsubaki N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 [J]. Fuel, 2008, 87: 443-450.
[15]
Zhai X F, Shamoto J, Xie H J, Tan Y S, Han Y Z, Tsubaki N. Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase [J]. Fuel, 2008, 87: 430-434.
[16]
Zhao T S, Yoneyama Y, Fujimoto K, Yamane N, Fujimoto K, Tsubaki N. Promotional effect of potassium salt in low-temperature formate and methanol synthesis from CO/CO2/H2 on copper catalyst [J]. Chem. Lett., 2007, 36: 734-735.
[17]
Zhao T S, Zhang K, Chen X R, Ma Q X, Tsubaki N. A novel low-temperature methanol synthesis method from CO/H2/CO2 based on the synergistic effect between solid catalyst and homogeneous catalyst [J]. Catal. Today, 2010, 149: 98-140.
[18]
Shi L, Tao K, Yang R Q, Meng F Z, Xing C, Tsubaki N. Study on the preparation of Cu/ZnO catalyst by sol-gel auto-combustion method and its application for low-temperature methanol synthesis [J]. Appl. Catal. A: Gen., 2011, 401: 46-55.
[19]
Shi L, Yang R Q, Tao K, Yoshiharu Yoneyama, Tan Y S, Tsubaki Noritatsu. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: as-burnt Cu-ZnO/SiO2 catalyst for low-temperature methanol synthesis [J]. Catalysis Today, 2012, 185: 54-60.
[20]
Zeng C Y, Shi L, Sun J, Yoshiharu Yoneyama, Wang T J, Tsubaki Noritatsu. Nitrate combustion methods to prepare highly active Cu/ZnO catalysts for low-temperature methanol synthesis: comparative behaviors of citric acid in air or argon atmosphere [J]. Bull. Chem. Soc. Jpn., 2013, 84: 1202-1209.
[21]
Shi L, Tan Y S, Tsubaki N. A solid-state combustion method towards metallic Cu-ZnO catalyst without further reduction and its application to low-temperature methanol synthesis [J]. Chem. Cat. Chem., 2012, 4: 863-871.
[22]
Shi L, Shen W Z, Yang G H, Fan X J, Jin Y Z, Zeng C Y, Kenji Matsuda, Tsubaki Noritatsu. Formic acid directly assisted solid-state synthesis of metallic catalysts without further reduction: as-prepared Cu/ZnO catalysts for low-temperature methanol synthesis [J]. Journal of Catalysis, 2013, 302: 83-90.
[23]
Yang R Q, Fu Y L, Zhang Y, Tsubaki N. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter [J]. J. Catal., 2004, 228: 23-35.
[24]
Yang R Q, Fu Y L, Zhang Y, Xu B L, Tsubaki N. In-situ DRIFT study of a new low-temperature methanol synthesis mechanism [J]. Bull. Chem. Soc. Jpn., 2005, 78: 135-137.
[25]
Yang R Q, Zhang Y, Tsubaki N. Dual catalysis mechanism of alcohol solvent and Cu catalyst for a new methanol synthesis method [J]. Catal. Commun., 2005, 6: 275-279.
[26]
Yang R Q, Zhang Y, Iwama Y, Tsubaki N. Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts [J]. Appl. Catal. A: Gen., 2005, 288: 126-133.
[27]
Yang R Q, Zhang Y, Tsubaki N. Spectroscopic and kinetic analysis of a new low-temperature methanol synthesis reaction [J]. Catal. Lett., 2006, 106: 153-159
[28]
Yang R Q, Zhang Y, Tsubaki N. Rideal-type reaction of formate species with alcohol: a key step in new low-temperature methanol synthesis method [J]. Catal. Commun., 2007, 8: 1829-1833.
[29]
Zhang Y, Yang R Q, Tsubaki N. A new low-temperature methanol synthesis method: mechanistic and kinetics study of catalytic process [J]. Catal. Today, 2008, 132: 93-100.