Santos J B O, Valenca G P, Rodrigues J A J. Catalytic decomposition of hydrazine on tungsten carbide:the influence of adsorbed oxygen [J]. J. Catal., 2002, 210: l-13.
[2]
Ma Chun'an (马淳安), Huang Ye (黄烨), Tong Shaoping (童少平), Zhang Weimin (张维民). The catalytic behavior of tungsten carbide for the electroreduction of p-nitrophenol [J]. Acta Phys.-Chim.Sin. (物理化学学报), 2005, 21 (7): 721-724.
[3]
Nie Ming (聂明). WC enhanced catalysis of noble metallic catalysts for fuel cells [D]. Chongqing: Chongqing University, 2007.
[4]
Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
[5]
Li Guohua (李国华), Tian Wei (田伟), Tang Junyan (汤俊艳), Ma Chun'an (马淳安). Preparation and electrocatalytic property for methanol oxidation of WC/CNT nanocomposite [J]. Acta Phys.-Chim.Sin. (物理化学学报), 2007, 23 (9): 1370-1374.
[6]
Jin Yanxian (金燕仙), Shi Meiqin (施梅勤), Liu Weiming (刘委明), Chu Youqun (褚有群), Xu Yinghua (徐颖华), Ma Chun'an (马淳安), Jia Wenping (贾文平), Zhao Guojie (赵国杰), Yu Jianqing (余剑清). Pt/WC-CNTs electrocatalyst for oxygen reduction reaction [J]. CIESC Journal (化工学报), 2014, 65 (10): 4016-4024.
[7]
De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source [J]. Science, 1995, 270: 1179-1180.
[8]
Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286: 1127-1229.
[9]
Rueckes T, Kim K, Joselevich E, Tseng G Y, Cheung C L, Lieber C M. Carbon nanotube-based nonvolatile random access memory for molecular computing [J]. Science, 2000, 289: 94-97.
[10]
Li Ling (李玲), Lin Kui (林奎), Zhang Fan (张帆), Cui Lan (崔兰), Wang Hui (王慧), Chen Xiaoping (陈小平), Zhang Lishuang (张丽爽), Sayyar Ali Shah, Cui Shen (崔屾). Preparation of N-doped long bamboo-like carbon nanotubes and their growth mechanism [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2014, 30 (5): 1097-1103.
[11]
Journet C, Maser W K, Bernler P, Loiseau A, delaChapelle M L, Lefrant S, Deniard P, Lee R, Fischer J E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J]. Nature, 1997, 388: 756-760.
[12]
Dai H. Carbon nanotubes:opportunities and challenges [J]. Surface Sci., 2002, 500 (1/2/3): 218-241.
[13]
Eklund P C, Pradhan B K, Kim U J, Xiong Q, Fischer J E, Friedman A D, Holloway B C, Jordan K, Smith M W. Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser [J]. Nano Lett., 2002, 2 (6): 561-566.
[14]
Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes [J]. Chem. Phys. Lett., 1998, 292: 567-574.
[15]
Kobayashi K, Kitaura R, Kumai Y, Goto Y, Inagaki S, Shinohara H. Synthesis of single-wall carbon nanotubes grown from size-controlled Rh/Pd nanoparticles by catalyst-supported chemical vapor deposition [J]. Chem. Phys. Lett., 2008, 458 (4): 346-350.
[16]
Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J. Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst [J]. Chem. Phys. Lett., 2004, 383 (1): 104-108.
[17]
Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis [J]. Science, 1973, 181: 547-549.
[18]
Kojima I, Miyazaki E, Inoue Y, Yasumori I. Catalytic activities of TIC, WC, and TAC for hydrogenation of ethylene [J]. J. Catal., 1979, 59: 472-81.
[19]
Keller V, Wehrer P, Garin F, Ducros R, Maire G. Catalytic activity of bulk tungsten carbides for alkane reforming (Ⅱ): Catalytic activity of tungsten carbides modified by oxygen [J]. J. Catal., 1997, 166: 125-135.
[20]
Wang J M, Khoo E, Lee P S, Ma J. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods [J]. J. Phys. Chem. C, 2008, 112 (37): 14306-14312.
[21]
Cao G Z. Nanostructures and Nanomaterials: Synthesis, Properties and Applications [M]. London: Imperial College Press, 2004.
[22]
Wang J M, Khoo E, Lee P S, Ma J. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte [J]. J. Phys. Chem. C, 2009, 113: 9655-9658.
[23]
Kong J, Cassell A M, Dai H X. Chemical vapor deposition of methane for single-walled carbon nanotubes [J]. Chem. Phys. Lett., 1998, 292: 567-574.
[24]
Lee C J, Park J. Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition [J]. Appl. Phys. Lett., 2000, 77: 3397-3399.
[25]
Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A L, Ferrari A C, Roy D, Robertson J, Milne W I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J]. J. Appl. Phys., 2001, 90 (10): 5308-5317.
[26]
Kukovitsky E F, L'vov S G, Sainov N A, Shustov V A, Chernozatonskii L A. Correlation between metal catalyst particle size and carbon nanotube growth [J]. Chem. Phys. Lett., 2002, 355 (5/6): 497-503.
[27]
Tibbetts G G. Why are carbon filaments tubular? [J]. Journal of Crystal Growth, 1984, 66 (3): 632-638.