全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

N,N-二乙基乙醇胺(DEEA)溶液CO2吸收解吸性能的实验研究

DOI: 10.11949/j.issn.0438-1157.20150906, PP. 3739-3745

Keywords: 二氧化碳捕集,吸收,再生,N,N-二乙基乙醇胺,溶解度,热能

Full-Text   Cite this paper   Add to My Lib

Abstract:

胺法捕集回收二氧化碳工艺存在的最大缺陷是高吸收速率与低再生能耗不能共存,高效溶剂的开发是解决这一问题的有效途径之一。为筛选出吸收解吸综合性能良好的吸收剂,本文利用溶剂快速筛选实验装置对几种不同醇胺吸收剂进行了实验研究,主要从溶液吸收负载、吸收速率、解吸负载、解吸速率、循环容量及相对再生能耗等方面进行了分析比较,实验结果显示N,N-二乙基乙醇胺(DEEA)溶液表现出较好的CO2捕获性能。此外,通过溶解度装置、填料吸收塔及再生塔分别对DEEA溶液的平衡溶解度、传质系数及再生能耗进行了实验研究与验证。实验结果表明:增加溶液浓度会降低其CO2平衡溶解度;增加CO2分压能增加其CO2平衡溶解度;增大进料温度能增加溶液在填料塔中的传质系数;提高富液负载及贫液负载会降低溶液的再生能耗。因此,基于其较好的吸收解吸性能,DEEA是一种可以工业化应用的潜在吸收剂。

References

[1]  IEA (International Energy Agency). CO2 Emissions from Fuel Combustion 2011-Highlights [M]. Paris, France: IEA.
[2]  Deetman S, Hof A F, Pfluger B, van Vuuren D P, Girod B, van Ruijven B J. Deep greenhouse gas emission reductions in Europe: Exploring different options [J]. Energy Policy, 2013, 55: 152-164.
[3]  Hua Ben (华贲). Resources and energy and energy trends of petrochemical industry in low carbon era [J]. CIESC Journal (化工学报), 2013, 64 (1): 76-83.
[4]  Oexmann J, Hensel C, Kather A. Post-combustion CO2-capture from coal-fired power plants: preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate [J]. International Journal of Greenhouse Gas Control, 2008, 2: 539-552.
[5]  Gao H, Zhou L, Liang Z, Idem R O, Fu K, Sema T, Tontiwachwuthikul P. Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine [J]. International Journal of Greenhouse Gas Control, 2014, 24:87-97.
[6]  Li Xiaofei (李小飞), Wang Shujuan (王淑娟), Chen Changhe (陈昌和). Heat requirement for regeneration of a CO2 capture system using amine solutions [J]. CIESC Journal (化工学报), 2013, 64 (9): 3348-3355.
[7]  Maneeintr K, Idem R O, Tontiwachwuthikul P, Wee A G. Comparative mass transfer performance studies of CO2 absorption into aqueous solutions of DEAB and MEA [J]. Industrial & Engineering Chemistry Research, 2010, 6:2857-2863.
[8]  Bishnoi S, Rochelle G T. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility [J]. Chemical Engineering Science, 2000, 55 (22):5531-5543.
[9]  Xu G, Zhang C, Qin S, et al. Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine [J]. Industrial & Engineering Chemistry Research, 1992, 31 (3):921-927.
[10]  Bosch H, Versteeg G F, van Swa W P M. Kinetics of the reaction of CO2 with the sterically hinderedamine 2-amino-2-methyl-propanol at 298 K [J]. Chemical Engineering Science, 1990, 45 (5):1167-1173.
[11]  Zheng Que (郑碏), Dong Lihu (董立户), Chen Jian (陈健), Gao Guanghua (高光华), Fei Weiyang (费维扬). Absorption solubility calculation and process simulation for CO2 capture [J]. CIESC Journal (化工学报), 2010, 64 (7): 1740-1746.
[12]  Lepaumier H, Picq D, Carrette P L.New amines for CO2 capture(I): Mechanisms of amine degradation in the presence of CO2 [J]. Industrial & Engineering Chemistry Research, 2009, 48:9061-9067.
[13]  Lawal O, Bello A, Idem R. The role of methyldiethanolamine (MDEA) in preventing the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA)-MDEA blends during CO2 absorption from flue gases [J]. Industrial & Engineering Chemistry Research, 2005, 44 (4): 1874-1896.
[14]  Aronu U E, Svendsen H F, Hoff K A, Juliussen O. Solvent selection for carbon dioxide absorption [J]. Energy Procedia, 2009, 1:1051-1057.
[15]  Aroonwilas A, Tontiwachwuthikul P. Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing [J]. Industrial & Engineering Chemistry Research, 1998, 37:569-575.
[16]  Naami A, Edali M, Sema T, Idem R, Tontiwachwuthikul P. Mass transfer performance of CO2 absorption into aqueous solutions of 4-(diethylamino)-2-butanol, monoethanolamine, and N-methyldiethanolamine [J]. Industrial & Engineering Chemistry Research, 2012, 51:6470-6479.
[17]  Maneeintr K, Idem R O, Tontiwachwuthikul P, Wee A G H. Comparative mass transfer performance studies of CO2 absorption into aqueous solutions of DEAB and MEA [J]. Industrial & Engineering Chemistry Research, 2010, 49:2857-2863.
[18]  Kim I, Svendsen H F. Comparative study of the heats of absorption of post combustion CO2 absorbents [J]. International Journal of Greenhouse Gas Control, 2011, 5:390-395.
[19]  Kolska Z, Kukal J, Zabransk M, Ruzicka V. Estimation of the heat capacity of organic liquids as a function of temperature by a three-level group contribution method [J]. Industrial & Engineering Chemistry Research, 2008, 47:2075-2085.
[20]  Marrero J, Gani R. Group-contribution based estimation of pure component properties [J]. Fluid Phase Equilibr, 2001, 183:183-208.
[21]  Zhang X, Fu K, Liang Z, Rongwong W, Yang Z, Idem R, Tontiwachwuthikul P. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing [J]. Fuel, 2014, 136:261-267.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133