全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

利用13CNMR技术探究叔胺溶液中HCO3-的生成

DOI: 10.11949/j.issn.0438-1157.20150898, PP. 3719-3725

Keywords: 核磁共振,二氧化碳,吸收,叔胺

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用13CNMR技术对CO2捕获叔胺溶剂进行了碳元素的定量研究,主要考察了对胺溶剂解吸热影响较大的HCO3-的生成规律。重点对叔胺分子结构中羟基官能团(-OH)、羟烷基数目、烷基支链及氮原子(N)所连接烷基链大小对胺溶剂生成HCO3-的影响。在20℃条件下分别对1mol·L-1具有不同CO2负载的1-二甲基氨基-2-丙醇(1DMA2P)、N-甲基二乙醇胺(MDEA)、3-二甲氨基-1-丙醇(3DMA1P)、二乙氨基-2-丙醇(1DEA2P)、N,N-二乙基乙醇胺(DEEA)、N,N-二甲基乙醇胺(DMMEA)及三乙醇胺(TEA)溶液进行了13CNMR测试研究。实验结果显示:在相同浓度的叔胺水溶液中,同一CO2负载下的叔胺-CO2-水体系中HCO3-的含量顺序为:DMMEA>MDEA>3DMA1P>1DMA2P>TEA>DEEA>1DEA2P。通过对各叔胺分子结构中N原子的电子云密度大小及空间位阻效应分析,得出如下结论:3DMA1P分子中-OH官能团离N原子的距离大于其在DMMEA分子中的距离,导致其生成了较少的HCO3-;DMMEA分子中N原子上连接的烷基链小于DEEA分子中N原子上的烷基链,导致DMMEA溶液中生成了更多的HCO3-;MDEA分子中羟烷基数目少于TEA分子中的羟烷基数目,且MDEA比TEA多了一个甲基,导致MDEA溶液中含有更多的HCO3-;3DMA1P相比1DMA2P、DEEA相比1DEA2P分子中都少了一个甲基支链,导致3DMA1P溶液相比1DMA2P溶液、DEEA溶液相比1DEA2P溶液生成了更多的HCO3-。

References

[1]  Coninck H D, Loos M, Metz B, Davidson O, Meyer L. IPCC special report on carbon dioxide capture and storage[R]. 2005.
[2]  Li Weibin (李伟斌), Chen Jian (陈健). Kinetics of absorption of CO2 into aqueous MEA solutions [J]. Sciencepaper Online (中国科技论文在线), 2009, 4 (12): 849-854.
[3]  Li Weibin (李伟斌), Dong Lihu (董立户), Chen Jian (陈健). Absorption kinetics of CO2 in aqueous solutions of secondary and tertiary alkanolamines [J]. The Chinese Journal of Process Engineering (过程工程学报), 2011, 11 (3): 422-428.
[4]  Sema T, Naami A, Liang Z, Shi H, Rayer A V, Sumon K Z, Wattanaphan P, Henni A, Idem R, Saiwan C. Recent progress and new development of post-combustion carbon-capture technology using reactive solvents (Part 5b): Solvent chemistry: reaction kinetics of CO2 absorption into reactive amine solutions [J]. Carbon Management, 2012, 3 (2): 201-220.
[5]  Rayer A V, Sumon K Z, Sema T, Henni A, Idem R, Tontiwachwuthikul P. Recent progress and new development of post-combustion carbon-capture technology using reactive solvents (Part 5c): Solvent chemistry: solubility of CO2 in reactive solvents for post-combustion CO2 [J]. Carbon Management, 2012, 3 (5): 467-484.
[6]  Jakobsen J P, Krane J, Svendsen H F. Liquid-phase composition determination in CO2-H2O-alkanolamine systems: a NMR study [J]. Industrial & Engineering Chemistry Research, 2005, 44 (26): 9894-9903.
[7]  Yeh J T, Resnik K P, Rygle K, Pennline H W. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia [J]. Fuel Processing Technology, 2005, 86 (14): 1533-1546.
[8]  Nitta M, Hirose M, Abe T, Furukawa Y, Sato H, Yamanaka Y. 13C NMR spectroscopic study on chemical species in piperazine-amine- CO2-H2O system before and after heating [J]. Energy Procedia, 2013, 37: 869-876.
[9]  Song H Y, Jeon S B, Jang S Y, Lee S S, Kang S K, Oh K J. Impact of speciation on CO2 capture performance using blended absorbent containing ammonia, triethanolamine and 2-amino-2-methyl-1-propanol [J]. Korean Journal of Chemical Engineering, 2014, 31 (7): 1237-1245.
[10]  Dugas R Rochelle G. Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine [J]. Energy Procedia, 2009, 1 (1): 1163-1169.
[11]  Zhang X, Fu K, Liang Z, Rongwong W, Yang Z, Idem R, Tontiwachwuthikul P. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing [J]. Fuel, 2014, 136: 261-267.
[12]  Feng B, Du M, Dennis T J, Anthony K, Perumal M J. Reduction of energy requirement of CO2 desorption by adding acid into CO2-loaded solvent [J]. Energy & Fuels, 2009, 24 (1): 213-219.
[13]  Shi H, Naami A, Idem R, Tontiwachwuthikul P. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents [J]. International Journal of Greenhouse Gas Control, 2014, 26, 39-50.
[14]  Li Tiancheng (李天成), Kong Qinghua (孔庆华), Chen Chen (陈郴), Piao Xianglan (朴香兰). CO2 capture with complex absorbent of ionic liquid and water [J]. CIESC Journal (化工学报), 2013, 64 (2): 600-608.
[15]  Du Min (杜敏), Zhang Li (张力), Bo Feng. Effect of adipic acid on absorption and desorption of CO2 with MEA solution [J]. CIESC Journal (化工学报), 2011, 62 (2): 412-419.
[16]  Fei Weiyang (费维扬), Ai Ning (艾宁), Chen Jian (陈健). Capture and separation of greenhouse gases CO2-the challenge and opportunity for separation technology [J]. Chemical Industry and Engineering Progress (化工进展), 2005, 24 (1): 1-4.
[17]  Barzagli F, Mani F, Peruzzini M. Continuous cycles of CO2 absorption and amine regeneration with aqueous alkanolamines: a comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by 13C NMR spectroscopy [J]. Energy & Environmental Science, 2010, 3 (6): 772-779.
[18]  Barzagli F, Mani F, Peruzzini M. A 13C NMR investigation of CO2 absorption and desorption in aqueous 2,2'-iminodiethanol and N-methyl-2,2'-iminodiethanol [J]. International Journal of Greenhouse Gas Control, 2011, 5 (3): 448-456.
[19]  Ciftja A F, Hartono A, Svendsen H F. 13C NMR as a method species determination in CO2 absorbent systems [J]. International Journal of Greenhouse Gas Control, 2013, 16: 224-232.
[20]  Liu H, Liang Z, Sema T, Rongwong W, Li C, Na Y, Idem R, Tontiwachwuthikul P. Kinetics of CO2 absorption into a novel 1-diethylamino-2-propanol solvent using stopped-flow technique [J]. AIChE Journal, 2014, 60 (10): 3502-3510.
[21]  Fu K, Sema T, Liang Z, Liu H, Na Y, Shi H, Idem R, Tontiwachwuthikul P. Investigation of mass-transfer performance for CO2 absorption into diethylenetriamine (DETA) in a randomly packed column [J]. Industrial & Engineering Chemistry Research, 2012, 51 (37): 12058-12064.
[22]  Holmes P E, Naaz M, Poling B E. Ion concentrations in the CO2-NH3-H2O system from 13C NMR spectroscopy [J]. Industrial & Engineering Chemistry Research, 1998, 37 (8): 3281-3287.
[23]  Fulmer G R, Miller A J, Sherden N H, Gottlieb H E, Nudelman A, Stoltz B M, Bercaw J E, Goldberg K I. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist [J]. Organometallics, 2010, 29 (9): 2176-2179.
[24]  Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes [J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19 (3): 260-266.
[25]  Shi H, Sem T, Naami A, Liang Z, Ide R, Tontiwachwuthikul P. 13C NMR spectroscopy of a novel amine species in the DEAB-CO2-H2O system: VLE model [J]. Industrial & Engineering Chemistry Research, 2012, 51 (25): 8608-8615.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133