全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

多巴胺包埋磁性SiO2固定化漆酶催化去除4-氯酚

DOI: 10.11949/j.issn.0438-1157.20150871, PP. 3705-3711

Keywords: 磁性纳米颗粒,漆酶,固定化,催化,降解,氯酚,废水

Full-Text   Cite this paper   Add to My Lib

Abstract:

以磁性纳米颗粒为载体,通过多巴胺(dopamine,DA)聚合原位包埋制备了磁性SiO2固定化漆酶(Fe3O4@SiO2-PDA-Lac)。结果显示纳米颗粒尺寸均匀,并且保持较高的饱和磁性。通过最优条件制备出的固定化漆酶在50℃放置6h后,活性保持在63%,而游离酶仅保留18%。将固定化酶用于催化降解4-氯酚(4-CP),探究了溶液pH、漆酶浓度和ABTS[2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸铵)]对4-CP去除率的影响。固定化漆酶在反应最适pH时,4-CP去除率为84.3%,而游离酶仅为65.7%。当漆酶浓度为1.2U·ml-1时,反应8h后,4-CP去除率可达95%,而游离酶的4-CP去除率仅82%。ABTS可促进固定化漆酶降解4-CP,当体系中加入50μmol·L-1的ABTS,反应10min后,固定化酶对4-CP去除率可达99%。固定化漆酶在重复使用10次后,4-CP去除率仍可达67%。

References

[1]  Salmer`On-Aleoeer A, Ruiz-Ordaz N, Ju`arez-Ram`xrez C, Galíndez-Mayer J. Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp, Microbacterium phyllosphaerae, and Candida tropicalis [J]. Biochem. Eng. J., 2007, 37 (2): 201-211.
[2]  Ho K L, Lin B, Chen Y Y, Lee D J. Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules [J]. Bioresource Technol., 2010, 100 (21): 5051-5063.
[3]  Duan X Y, Ma F, Chang L M. Electrochemical degradation of 4-chlorophenol in aqueous solution using modified PbO2 anode [J]. Water Sci. Technol., 2012, 66 (11): 2468-2474.
[4]  Neppolian B, Vinoth R, Bianchi C L, Ashokkumar M. Degradation of 4-chlorophenol and NOx using ultrasonically synthesized TiO2 loaded graphene oxide photocatalysts [J]. Sci. Adv. Mater., 2015, 7 (6): 1149-1155.
[5]  Lloret L, Eibes G, Feijoo G, Moreira M T, Lema J M, Hollmann F. Immobilization of laccase by encapsulation in a sol-gel matrix and it characterization and use for the removal of estrogens [J]. Biotechnol. Progr., 2011, 27 (6): 1570-1579.
[6]  Yin Y, Xiao Y,Lin G,Xiao Q,Lin Z, Cai Z. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity [J].J. Mater. Chem. B, 2015, 3: 2295-2300.
[7]  Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications [J]. Chem. Soc. Rev., 2013, 42 (15): 6236-6249.
[8]  Yaropolov A, Skorobogat'Ko O, Vartanov S, Varfolomeyev S. Laccase [J]. Appl. Biochem. Biot., 1994, 49 (3): 257-280.
[9]  Davis S, Burns R G. Covalent immobilization of laccase on activated carbon for phenolic effluent treatment [J]. Appl. Microbiol. Biot., 1992, 37 (4): 474-479.
[10]  Champagne P P, Ramsay J. Dye decolorization and detoxification by laccase immobilized on porous glass beads [J]. Bioresource Technol., 2010, 101 (7): 2230-2235.
[11]  Jiang D S, Long S Y, Huang J, Xiao H Y, Zhou J Y. Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres [J]. Biochem. Eng. J., 2005, 25 (1): 15-23.
[12]  Datta S, Christena L R, Rajaram Y R S. Enzyme immobilization: an overview on techniques and support materials [J]. 3 Biotech, 2013, 3 (1): 1-9.
[13]  Zheng M Q, Zhang S P, Ma G H, Wang P. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes [J]. J. Biotehnol., 2014, 154 (4): 274-280.
[14]  Cui J, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules [J]. Biomacromolecules, 2012, 13 (8): 2225-2228.
[15]  Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings [J]. Adv. Mater., 2009, 21 (4): 431-434.
[16]  Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos [J]. Nature, 2007, 448 (7151): 338-341.
[17]  Lai G, Zhang H, Yong J, Yu A. In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay [J]. Biosens. Bioelectron., 2013, 47: 178-183.
[18]  Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields [J]. Chem. Rev., 2014, 114 (9): 5057-5115.
[19]  Deng M F, Zhao H, Zhang S P, Tian C Y, Zhang D, Du P H, Liu C M, Cao H B, Li H P. High catalytic activity of immobilized laccase on core-shell magnetic nanoparticles by dopamine self-polymerization [J]. J. Mol. Catal. B-Enzym., 2015, 112: 15-24.
[20]  Raul A, Laura D M, Laura C, Alvaro M, Marcel T, Valeria G, Jesús M D L F, Clara M, Ricardo I. Spatially-resolved EELS analysis of antibody distribution on biofunctionalized magnetic nanoparticles [J]. ACS Nano, 2013, 7 (5): 4006-4013.
[21]  Zhang P, Wang Q Q, Zhang J N, Li G H, Wei Q F. Preparation of amidoxime-modified polyacrylonitrile nanofibers immobilized with laccase for dye degradation [J]. Fiber. Polym., 2014, 15 (1): 30-34.
[22]  Wang Q Q, Cui J, Li G H, Zhang J N, Li D W, Huang F L, Wei Q F. Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process [J]. Molecules, 2014, 19 (3): 3376-3388.
[23]  Xu R, Chi C L, Li F T, Zhang B R. Laccase-polyacrylonitrile nanofibrous, membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal [J]. ACS Appl. Mater. Interfaces, 2013, 5 (23): 12554-12560.
[24]  Yang C, Wu H, Shi J F, Wang X L, Xie J J, Jiang Z Y. Preparation of dopamine/titania hybrid nanoparticles through biomimetic mineralization and titanium (Ⅳ)-catecholate coordination for enzyme immobilization [J]. Ind. Eng. Chem. Res., 2014, 53 (32): 12665-12672.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133