全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

磺化含酚酞侧基聚芳醚酮/氧化石墨烯复合质子交换膜的性能

DOI: 10.11949/j.issn.0438-1157.20150874, PP. 3605-3610

Keywords: 燃料电池,电解质,,聚芳醚酮,氧化石墨烯,质子交换膜

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用共混制备了一系列磺化含酚酞侧基聚芳醚酮(SPEK-C)/氧化石墨烯(GO)复合质子交换膜,系统地研究了GO含量对复合膜性能的影响。结果表明,GO含量对膜的离子交换容量、稳定性、质子电导率和甲醇渗透率等有重要影响。复合膜质子电导率随GO含量增加而提高,GO含量为2%和5%的复合膜在80℃下质子电导率均在10-1S·cm-1以上。80℃下,GO含量为5%的复合膜甲醇渗透率为6.69×10-7cm2·s-1,低于同温度下复合前SPEK-C膜1个数量级。复合后膜的化学稳定性增强,离子交换容量和含水率均有提高,相对选择性明显增大,最高达SPEK-C的18.2倍。

References

[1]  Zhang H W, Shen P K. Recent development of polymer electrolyte membranes for fuel cells [J]. Chem. Rev., 2012, 112: 2780-2832.
[2]  Bose S, Kuila T, Nguyen T X H. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges [J]. Prog. Polym. Sci., 2011, 36: 813-843.
[3]  Bernardi D, Verbrugge M. A mathematical model of the solid polymer-electrolyte fuel cell [J]. J. Electrochem. Soc., 1992, 139: 2477-2491.
[4]  Li L, Zhang J, Wang Y. Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell [J]. J. Membrane. Sci., 2003, 226: 159-167.
[5]  Wilhelm F G, Pünt I, Vander V F. Cation permeable membranes from blends of sulfonated poly (ether ether ketone) and poly (ether sulfone) [J]. J. Membrane. Sci., 2002, 199: 167-176.
[6]  Ounaies Z, Park C, Wise K E, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites [J]. Compos. Sci. Technol., 2003, 63: 1637-1646.
[7]  Hickner M, Ghassemi H, Kim Y S. Alternative polymer systems for proton exchange membranes (PEMs) [J]. Chem. Rev., 2004, 104: 4587-4612.
[8]  Roziere J, Deborah J J. Non-fluorinated polymer materials for proton exchange membrane fuel cells [J]. Annu. Rev. Mater. Res., 2003, 33: 503-555.
[9]  Rinaudo M. Chitin and chitosan: properties and applications [J]. Prog. Polym. Sci., 2006, 31: 603-632.
[10]  Chen J H, Liu Q L, Zhu A M. Dehydration of acetic acid using sulfonation cardo polyetherketone (SPEK-C) membranes [J]. J. Membrane. Sci., 2008, 308: 171-179.
[11]  Zhu Y W, Murali S, Cai W W. Graphene and graphene oxide: synthesis, properties, and applications [J]. Adv. Mater., 2010, 22: 3906-3924.
[12]  Dreyer D, Park S, Bielawski C. The chemistry of graphene oxide [J]. Chem. Soc. Rev., 2010, 39: 228-240.
[13]  Karim M R, Hatakeyama K, Matsui T, Takehira H, Noro S I. Graphene oxide nanosheet with high proton conductivity [J]. J. Am. Chem. Soc., 2013, 135: 8097-8100.
[14]  He H Y, Riedl T, Lerf A. Solid-state NMR studies of the structure of graphite oxide [J]. J. Phys. Chem., 1996, 100: 19954-19958.
[15]  Deng C, Zhang Q G, Han G L. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation [J]. Nanoscale, 2013, 5: 11028-11034.
[16]  Jacques R, Deborah J. Non-fluorinated polymer materials for proton exchange membrane fuel cells [J]. Annu. Rev. Control, 2003, 33: 503-555.
[17]  Mohammad R K, Kazuto H, Takeshi M. Graphene oxide nanosheet with high proton conductivity [J]. J. Am. Chem. Soc., 2013, 135: 8097-8100.
[18]  Lin C W, Lu Y S. Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells [J]. J. Power Sources, 2013, 237: 187-194.
[19]  Xu P Y, Zhou K, Han G L, Liu Q L. Fluorene-containing poly (arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells [J]. J. Membr. Sci., 2014, 457: 29-38.
[20]  Lai A N, Wang L S, Lin C X, Liu Q L. Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells [J]. J. Membr. Sci., 2015, 481: 9-18.
[21]  Xu P Y, Zhou K, Han G L. Effect of fluorene groups on the properties of multiblock poly (arylene ether sulfone) s-based anion-exchange membranes [J]. ACS Appl. Mater. & Inter., 2014, 6: 6776-6785.
[22]  Lufrano F, Baglio V, Blasi O, Antonucci V. Design of efficient methanol impermeable membranes for fuel cell applications [J]. Phys. Chem. Chem. Phys., 2012, 14: 2718-2726.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133