全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

H2S为毒物对乙炔氢氯化反应中AuCl3/AC催化剂催化活性的影响

DOI: 10.11949/j.issn.0438-1157.20150861, PP. 3476-3482

Keywords: H2S,AuCl3/AC,催化,失活机理,乙炔氢氯化

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用等体积浸渍法制备了1%AuCl3/AC催化剂,探究了硫化氢(H2S)为毒物对乙炔氢氯化反应中催化剂催化活性的影响及失活机理。催化活性测试结果表明,以H2S为毒物可导致乙炔氢氯化反应中的AuCl3/AC催化剂的失活,且是一个不可逆过程;程序升温还原(TPR)和X射线光电子能谱(XPS)分析结果表明,H2S的加入可有效地加快Au3+还原为Au0;透射电镜能谱(TEM-EDX)观测分析形成的Au-S化合物也可导致催化剂失活,即随着H2S量的增大,更多的Au3+被还原为Au0,且形成的Au-S化合物覆盖在活性位点,使有效的活性组分降低进而导致AuCl3/AC催化剂失活。

References

[1]  Trotu? I T, Zimmermann T, Schüth F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited [J]. Chem. Rev., 2013, 114(3): 1761-1782.
[2]  Steinborn D. Fundamentals of organometallic catalysis[M]. New York:John Wiley & Sons, 2011.
[3]  Chen Y, Xie C, Li Y, Song C, Bolin T B. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study [J]. Phys. Chem. Chem. Phys., 2010, 12(21): 5707-5711.
[4]  Adesina A A. Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs [J]. Appl. Catal. A: General, 1996, 138(2): 345-367.
[5]  Wood B J, Isakson W E, Wise H. Kinetic studies of catalyst poisoning during methanol synthesis at high pressures [J]. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19(2): 197-204.
[6]  Fitzharris W D, Katzer J R, Manogue W H. Sulfur deactivation of nickel methanation catalysts [J]. J. Catal., 1982, 76(2): 369-384.
[7]  Rodriguez J A, Dvorak J, Jirsak T, Li S Y, Hrbek J, Capitano A T, Gland J L. Chemistry of thiophene, pyridine, and cyclohexylamine on Ni/MoSx and Ni/S/Mo (110) surfaces: role of nickel in hydrodesulfurization and hydrodenitrogenation processes [J]. J. Phys. Chem. B., 1999, 103(39): 8310-8318.
[8]  Chattanathan S A, Adhikari S, McVey M, Fasina O. Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion [J]. Int. J. Hydrogen Energy, 2014, 39(35): 19905-19911.
[9]  Beale A M, Gibson E K, O'Brien M G, Jacques S D, Cernik R J, di Michiel M, Weckhuysen B M. Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies [J]. J. Catal., 2014, 314: 94-100.
[10]  Appari S, Janardhanan V M, Bauri R, Jayanti S, Deutschmann O. A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning [J]. Appl. Catal. A: General, 2014, 471: 118-125.
[11]  Prasad B, Janardhanan V M. Modeling sulfur poisoning of Ni-based anodes in solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161(3): F208-F213.
[12]  Sparks D E, Jacobs G, Gnanamani M K, Pendyala V R R. Poisoning of cobalt catalyst used for Fischer-Tropsch synthesis [J]. Catal. Today, 2013, 215: 67-72.
[13]  Lakhapatri S L, Abraham M A. Sulfur poisoning of Rh-Ni catalysts during steam reforming of sulfur-containing liquid fuels [J]. Catal. Sci. Technol., 2013, 3(10): 2755-2760.
[14]  Bartholomew C H. Mechanisms of catalyst deactivation [J]. Appl. Catal. A: General, 2001, 212(1): 17-60.
[15]  Yan X, Liu Y, Zhao B, Wang Y, Liu C J. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor [J]. Phys. Chem. Chem. Phys., 2013, 15(29): 12132-12138.
[16]  Bartholomew C H, Agrawal P K, Katzer J R. Sulfur poisoning of metals [J]. Adv. Catal., 1982, 31: 135-242.
[17]  Zhang J, Liu N, Li W, Dai B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts [J]. Front. Chem. Sci. Eng., 2011, 5(4): 514-520.
[18]  Nkosi B, Coville N J, Hutchings G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination [J]. J. Chem. Soc., Chem. Commun., 1988, (1): 71-72.
[19]  Hutchings G J. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts [J]. J. Catal., 1985, 96(1): 292-295.
[20]  Conte M, Carley A F, Attard G, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts [J]. J. Catal., 2008, 257(1): 190-198.
[21]  Huang C, Zhu M, Kang L, Li X, Dai B. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction [J]. Chem. Eng. J., 2014, 242: 69-75.
[22]  Chen Y W, Chen H J, Lee D S. Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream [J]. J. Mole. Catal. A: Chemical, 2012, 363: 470-480.
[23]  Dai B, Wang Q, Yu F, Zhu M. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination [J]. Scientific Reports, 2014, 5: 10553-10553.
[24]  Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Lin T S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. J. Am. Chem. Soc., 2012, 134(24): 10251-10258.
[25]  Li X, Zhu M, Dai B. AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts [J]. Appl. Catal. B: Environmental, 2013, 142: 234-240.
[26]  Mikhlin Y, Likhatski M, Karacharov A, Zaikovski V, Krylov A. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate structures in the reactions of aqueous HAuCl4 with sulfide and citrate ions [J]. Phys. Chem. Chem. Phys., 2009, 11(26): 5445-5454.
[27]  Baatz C, Decker N, Prüβe U. New innovative gold catalysts prepared by an improved incipient wetness method [J]. J. Catal., 2008, 258(1): 165-169.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133