全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

纤维素低温炭化特性

DOI: 10.11949/j.issn.0438-1157.20150619, PP. 4603-4610

Keywords: 纤维素,慢速热解,炭化,分子内/间氢键,二维相关红外光谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解纤维素在低温下焦炭的生成及演变过程,在固定床上开展了慢速热解实验,采用元素分析以及二维相关红外光谱技术对焦炭特性进行了分析。研究发现,纤维素慢速热解的分解主要集中于250~360℃。250~300℃时纤维素的炭化以脱水为主,且在炭化初期,分子间氢键断裂生成自由羟基,并使纤维素的大分子结构松散。而随着温度的升高,分子内氢键断裂以及羟基脱水,使得焦炭中生成大量的羰基、烯烃双键以及环醚结构。300℃时吡喃环开环及糖苷键断裂后,含双键及羰基的脂肪烃进一步发生分子重排、缩聚及芳环化而生成苯环、芳基烷基醚等结构。300~460℃的炭化以脱氧反应为主,此时焦炭中脂肪烃的含量逐渐降低,而芳香环含量增加。>460℃时的炭化以脱氢反应为主,此时焦炭中存在缩合程度较高的芳烃结构。

References

[1]  Ang?n D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake [J]. Bioresour. Technol., 2013, 128: 593-597.
[2]  Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review [J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11 (2): 395-419.
[3]  Fu P, Hu S, Sun L, Xiang J, Yang T, Zhang A, Zhang J. Structural evolution of maize stalk/char particles during pyrolysis [J]. Bioresour. Technol., 2009, 100 (20): 4877-4883.
[4]  Wang S, Wang H, Yin Q, Zhu L, Yin S. Methanation of bio-syngas over a biochar supported catalyst [J]. New J. Chem., 2014, 38 (9): 4471-4477.
[5]  Demirbas A, Arin G. An overview of biomass pyrolysis [J]. Energy Sources, 2002, 24 (5): 471-482.
[6]  Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose [J]. J. Appl. Polym. Sci., 1979, 23 (11): 3271-3280.
[7]  Liu Q, Wang S, Wang K, Guo X, Luo Z, Cen K. Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis [J]. Acta Physico-Chimica Sinica, 2008, 24 (11): 1957-1963.
[8]  Liao Yanfen, Wang Shurong, Ma Xiaoqian, Luo Zhongyang, Cen Kefa. Numerical approach to the mechanism of cellulose pyrolysis [J]. Chin. J. Chem. Eng., 2005, 13 (2): 197-203.
[9]  Wang S, Guo X, Liang T, Zhou Y, Luo Z. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies [J]. Bioresour. Technol., 2012, 104 (2): 722-728.
[10]  Tang M M, Bacon R. Carbonization of cellulose fibers (I): Low temperature pyrolysis [J]. Carbon, 1964, 2 (3): 211-220.
[11]  Pastorova I, Botto R E, Arisz P W, Boon J J. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study [J]. Carbohydr. Res., 1994, 262 (1): 27-47.
[12]  Shafizadeh F, Sekiguchi Y. Development of aromaticity in cellulosic chars [J]. Carbon, 1983, 21 (5): 511-516.
[13]  Sekiguchi Y, Frye J S, Shafizadeh F. Structure and formation of cellulosic chars [J]. J. Appl. Polym. Sci., 1983, 28 (11): 3513-3525.
[14]  Shen D, Xiao R, Gu S, Luo K. The pyrolytic behavior of cellulose in lignocellulosic biomass: a review [J]. RSC Advances, 2011, 1 (9): 1641-1660.
[15]  Noda I. Two-dimensional infrared (2D IR) spectroscopy: theory and applications [J]. Appl. Spectrosc., 1990, 44 (4): 550-561.
[16]  Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Generalized two-dimensional correlation spectroscopy [J]. Appl. Spectrosc, 2000, 54 (7): 236A-248A.
[17]  Yang H, Yan R, Chen H, Lee D H, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86 (12-13): 1781-1788.
[18]  Liu D, Yu Y, Wu H. Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose [J]. Energy Fuels, 2013, 27 (3): 1371-1380.
[19]  Yu Y, Liu D, Wu H. Characterization of water-soluble intermediates from slow pyrolysis of cellulose at low temperatures [J]. Energy Fuels, 2012, 26 (12): 7331-7339.
[20]  Visser S A. Application of Van Krevelen's graphical-statistical method for the study of aquatic humic material [J]. Environ. Sci. Technol., 1983, 17 (7): 412-417.
[21]  Oh S Y, Yoo D I, Shin Y, Kim H C, Kim H Y, Chung Y S, Park W H, Youk J H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy [J]. Carbohydr. Res., 2005, 340 (15): 2376-2391.
[22]  Popescu C-M, Popescu M-C, Vasile C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy [J]. Int. J. Biol. Macromol., 2011, 48 (4): 667-675.
[23]  Marchessault R H, Liang C Y. Infrared spectra of crystalline polysaccharides (III): Mercerized cellulose [J]. Journal of Polymer Science, 1960, 43 (141): 71-84.
[24]  Silverstein R R M, Webster F X, Kiemle D J. The Spectrometric Identification of Organic Compounds [M]. New York: John Wiley & Sons, 2005.
[25]  Ke Yikan (柯以侃), Dong Huiru (董慧茹). Handbook of Analytical Chemistry (Volume 3)-Spectroscopy (分析化学手册(3)-光谱分析) [M]. Beijing: Chemical Industry Press, 1998: 65.
[26]  Liang C Y, Marchessault R H. Infrared spectra of crystalline polysaccharides (II): Native celluloses in the region from 640 to 1700 cm-1 [J]. Journal of Polymer Science, 1959, 39 (135): 269-278.
[27]  Gardner K H, Blackwell J. The structure of native cellulose [J]. Biopolymers, 1974, 13 (10): 1975-2001.
[28]  Weng Shifu (翁诗甫). Fourier Transform Infrared Spectroscopy (傅里叶变换红外光谱分析) [M]. Beijing: Chemical Industry Press, 2010: 211.
[29]  Shafizadeh F, Lai Y Z. Thermal degradation of 1,6-anhydro-.beta.-D- glucopyranose [J]. J. Org. Chem., 1972, 37 (2): 278-284.
[30]  Piskorz J, Radlein D, Scott D S. On the mechanism of the rapid pyrolysis of cellulose [J]. J. Anal. Appl. Pyrolysis, 1986, 9 (2): 121-137.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133