Kruger U, Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach [J]. AIChE J., 2008, 54: 2581-2596.
[2]
Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis [J]. Chem. Eng. Sci., 2004, 59: 223-234.
[3]
Ge Z Q, Song Z H. Mixture Bayesian regularization method of PPCA for multi-mode process monitoring [J]. AIChE J., 2010, 56: 2838-2849.
[4]
Jin H D, Lee Y H, Han C H. Robust recursive principle component analysis modeling for adapting monitoring [J]. Ind. Eng. Chem. Res., 2006, 45: 696-703.
[5]
Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Ind. Eng. Chem. Res., 2004, 43: 7025-7035.
[6]
Ma H H, Hu Y, Shi H B. Fault detection and identification based on the neighborhood standardized local outlier factor method [J]. Ind. Eng. Chem. Res., 2013, 52: 2389-2402.
[7]
Tan S, Wang F L, Peng J, Chang Y Q, Wang S. Multimode process monitoring based on mode identification [J]. Ind. Eng. Chem. Res., 2012, 51: 374-388.
[8]
Liu J, Chen D S. Fault detection and identification using modified Bayesian classification on PCA subspace [J]. Ind. Eng. Chem. Res., 2009, 48: 3059-3077.
[9]
Ge Z Q, Song Z H. Multimode process monitoring based on Bayesian method [J]. Journal of Chemometrics, 2009, 23: 636-650.
[10]
Xie X, Shi H B. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace [J]. Chinese J. Chem. Eng., 2012, 20:1174-1179.
[11]
Ge Z Q, Gao F R, Song Z H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes [J]. Chem. Eng. Sci., 2011, 66: 5173-5183.
[12]
Choi S W, Park J H, Lee I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis [J]. Comput. Chem. Eng., 2004, 28: 1377-1387.
[13]
Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J]. AIChE J., 2008, 54:1811-1829.
[14]
Song B, Shi H B, Ma Y X, Wang J P. Multi-subspace principal component analysis with local outlier factor for multimode process monitoring [J]. Ind. Eng. Chem. Res., 2014, 53: 16453-16464.
[15]
Ge Z Q, Song Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors [J]. Ind. Eng. Chem. Res., 2007, 46: 2054-2063.
[16]
Zhao C H, Gao F R, Wang F L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) [J]. Ind. Eng. Chem. Res., 2009, 48: 9163-9174.
[17]
Ma Y X, Shi H B, Ma H H, Wang M L. Dynamic process monitoring using adaptive local outlier factor [J]. Chem. Intel. Lab. Syst., 2013, 127: 89-101.
[18]
Ge Z Q, Song Z H. Bagging support vector data description model for batch process monitoring [J]. J. Process Control, 2013, 23: 1090-1096.
[19]
Downs J J, Vogel E F. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering, 1993, 17: 245-255.
[20]
Ricker N L. Optimal steady-state operation of the Tennessee Eastman challenge process [J]. Comput. Chem. Eng., 1995, 19: 949-959.
[21]
Wang L, Shi H B. Multivariate statistical process monitoring using an improved independent component analysis [J]. Chem. Eng. Res. Des., 2010, 88: 403-414.
[22]
Zhao C H, Gao F R. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring [J]. Chemom. Intell. Lab. Syst., 2014, 133: 1-16.