全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

CO/N2/CO2在MOF-74(Ni)上吸附相平衡和选择性

DOI: 10.11949/j.issn.0438-1157.20150504, PP. 4469-4475

Keywords: MOF-74(Ni),吸附,一氧化碳,吸附选择性,二元混合物

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要研究了MOF-74(Ni)材料对CO/N2/CO2的吸附分离性能。应用水热法合成制备MOF-74(Ni),分别采用全自动表面积吸附仪、P-XRD、扫描电子显微镜对材料的孔隙结构和晶体形貌进行了表征,应用静态吸附法测定了CO、N2和CO2在MOF-74(Ni)上的吸附等温线,应用DSLF方程模拟了3种气体MOF-74(Ni)上的吸附等温线,依据IAST理论模型计算了MOF-74(Ni)对CO/N2二元混合物和CO/CO2二元混合物的吸附选择性。研究结果表明:在0.1MPa和常温条件下,MOF-74(Ni)材料对CO吸附容量高达6.15mmol·g-1,而相同条件下N2的吸附量只有0.86mmol·g-1。MOF-74(Ni)在低压下(0~40kPa)对CO的吸附量明显高于其对CO2的吸附量。应用IAST模型估算MOF-74(Ni)对二元混合物吸附选择性的结果表明:MOF-74(Ni)对CO/N2混合物的吸附选择性在1000以上;MOF-74(Ni)对CO/CO2的吸附选择性在4~9范围,在所研究的二元气体混合物吸附体系中,MOF-74(Ni)都能优先吸附CO。

References

[1]  Chen Zhongming (陈中明), Wu Lixin (武立新), Wei Xiqun (魏玺群), Li Kebing (李克兵), Yu Changzhong (于长忠). Purification and recovering of CO from yellow phosphorus tail-gas by TSA and PSA [J]. Natural Gas Chemical Industry (天然气化工), 2001, (4):24-26.
[2]  Zarca G, Ortiz I, Urtiaga A. Copper(Ⅰ)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation [J]. Journal of Membrane Science, 2013, 438: 38-45.
[3]  Heymans N, Alban B, Moreau S, de Weireld G. Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation [J]. Chem. Eng. Sci., 2011, 66(17): 3850-3858.
[4]  Mu Bin, Walton K S. High-pressure adsorption equilibrium of CO2, CH4, and CO on an impregnated activated carbon [J]. Journal of Chemical & Engineering Data, 2011, 56(3): 390-397.
[5]  Hartmann M, Racouchot S, Bischof C. Characterization of copper and zinc containing MCM-41 and MCM-48 mesoporous molecular sieves by temperature programmed reduction and carbon monoxide adsorption [J]. Micropor. Mesopor. Mat., 1999, 27(2/3): 309-320.
[6]  Xie Youchang (谢有畅), Zhang Jiaping (张佳平), Tong Xianzhong (童显忠), et al. High efficiency CO adsorbent CuCl/zeolite [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 1997, (7): 1159-1165.
[7]  Li Jianrong, Kuppler R J, Zhou Hongcai. Selective gas adsorption and separation in metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5): 1477-1504.
[8]  Raganati F, Gargiulo V, Ammendola P, Alfe M, Chirone R. CO2 capture performance of HKUST-1 in a sound assisted fluidized bed [J]. Chem. Eng. J., 2014, 239: 75-86.
[9]  Jing Yu (荆钰), Guo Jintao (郭金涛), Wang Chongqing (王重庆), Ma Zhengfei (马正飞). Adsorption of carbon monoxide on MIL-100(Fe) [J]. Natural Gas Chemical Industry (天然气化工), 2011, (5): 33-36.
[10]  Wu Xiaofei, Bao Zongbi, Yuan Bin, Wang Jun, Sun Yingqiang, Luo Hongmei, Deng Shuguang. Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation [J]. Micropor. Mesopor. Mat., 2013, 180: 114-122.
[11]  Liu Jian, Wang Yu, Benin A I, Jakubczak P, Willis R R, LeVan M D. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC [J]. Langmuir, 2010, 26(17): 14301-14307.
[12]  Vitillo J G, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel P D C, et al. Role of exposed metal sites in hydrogen storage in MOFs [J]. J. Am. Chem. Soc., 2008, 130(26): 8386-8396.
[13]  Myers A L, Prausnitz J M. Thermodynamics of mixed-gas adsorption [J]. AIChE J., 1965, 11(1): 121-127.
[14]  Huang Wenyu, Zhou Xin, Xia Qibin, Peng Junjie, Wang Haihui, Li Zhong. Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4 [J]. Ind. Eng. Chem. Res., 2014, 53(27): 11176-11184.
[15]  Zhang Zhangjing, Xiang Shengchang, Chen Banglin. Microporous metal-organic frameworks for acetylene storage and separation [J]. Cryst. Eng. Comm., 2011, 13(20): 5983-5992.
[16]  Krishna R, van Baten J M. In silico screening of metal-organic frameworks in separation applications [J]. Phys. Chem. Chem. Phys., 2011, 13(22): 10593-10616.
[17]  Martín Calvo A, Lahoz Martín F D, Calero S. Understanding carbon monoxide capture using metal organic frameworks [J]. The Journal of Physical Chemistry C, 2012, 116(11): 6655-6663.
[18]  Bloch E D, Hudson M R, Mason J A, Chavan S, Crocella V, Howe J D, et al. Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations [J]. J. Am. Chem. Soc., 2014, 136(30): 10752-10761.
[19]  Peng Junjie, Xian Sikai, Xiao Jing, Huang Yan, Xia Qibin, Wang Haihui, Li Zhong. A supported Cu(Ⅰ)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity [J]. Chem. Eng. J., 2015, 270: 282-289.
[20]  Phang W J, Lee W R, Yoo K, Ryu D W, Kim B, Hong C S. pH-Dependent proton conducting behavior in a metal-organic framework material [J]. Angew. Chem. Int. Edit., 2014, 53(32): 8383-8387.
[21]  Dietzel P D C, Panella B, Hirscher M, Blom R, Fjellvag H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework [J]. Chem. Commun., 2006, (9): 959-961.
[22]  Krishna R, Calero S, Smit B. Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite [J]. Chem. Eng. J., 2002, 88(1/2/3): 81-94.
[23]  Xian Sikai, Li Xuemei, Xu F, Xia Qibin, Li Zhong. Adsorption isotherms, kinetics, and desorption of 1,2-dichloroethane on chromium-based metal organic framework MIL-101 [J]. Sep. Sci. Technol., 2013, 48(10): 1479-1489.
[24]  Zhang Zhijuan, Huang Sisi, Xian Shikai, Xi Hongxia, Li Zhong. Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101 [J]. Energ. Fuel, 2011, 25(2): 835-842.
[25]  Zhao Zhenxia, Li Xuemei, Li Zhong. Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101 [J]. Chem. Eng. J., 2011, 173(1): 150-157.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133