Meng Zhaoguo, Wu Daxiong, Wang Liangang, et al. Carbon nanotube glycol nanofluids: photo-thermal properties, thermal conductivities and rheological behavior [J]. Particuology, 2012, 10: 614-618.
[2]
Ali Celen, Alican ?ebi, Melih Aktas, et al. A review of nanorefrigerants: flow characteristics and applications [J]. International Journal of Refrigeration, 2014, 44: 125-140.
[3]
Mahbubul I M, Fadhilah S A, Saidur R, et al. Thermophysical properties and heat transfer performance of Al2O3/R134a nanorefrigerants [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 100-108.
[4]
Sun Bin, Di Yang. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube [J]. International Journal of Refrigeration, 2014, 38: 206-214.
[5]
Mahbubul I M, Saidura R, Amalina M A. Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube [J]. Procedia Engineering, 2013, 56: 323-329.
[6]
SohelMurshed S M, Nieto de Castro C A, Louren?o M J V, Lopes M L M, Santos F J V. A review of boiling and convective heat transfer with nanofluids [J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2342-2354.
[7]
Wen Dongsheng, Lin Guiping, Saeid Vafaei, Zhang Kai. Review of nanofluids for heat transfer applications [J]. Particuology, 2009, 7(2): 141-150.
[8]
Akhavan-Behabadi M A, Nasr M, Baqeri S. Experimental investigation of flow boiling heat transfer of R600a/oil/CuO in a plain horizontal tube [J]. Experimental Thermal and Fluid Science, 2014, 58: 105-111.
[9]
Henderson K, Park Y G, Liu L, et al. Flow boiling heat transfer of R134a-based nanofluids in a horizontal tube [J]. Int. J. Heat Mass. Transfer, 2010, 53: 944-951.
[10]
Peng H, Ding D, Jiang W, et al. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube [J]. Int. J. Refrigeration, 2009, 32: 1259-1270.
[11]
Lou Jiangfeng(娄江峰), Zhang Hua (张华), Wang Ruixiang(王瑞祥), Li Meng(李萌). Effect of particle morphology and concentration on density and viscosity of graphite nanolubricant [J]. CIESC Journal(化工学报), 2014, 65(10): 3846-3851.
[12]
Gungor K E, Winterton R H S. A general correlation for flow blowing in tubs and annuli [J]. International Journal of Heat and Mass Transfer, 1986, 29(3): 351-358.
[13]
Wen Maoyu, Jang Kuangjang, Ho Chingyen. The characteristics of boiling heat transfer and pressure drop of R-600a in a circular tube with porous inserts [J]. Applied Thermal Engineering, 2014, 64(1/2): 348-357.
[14]
Chen Ruey-Hung, Phuoc Tran X, Martello Donald. Surface tension of evaporating nanofluid droplets [J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2459-2466.
[15]
Peng H, Ding D, Jiang W, et al. Heat transfer characteristics of nanorefrigerant flow boiling inside tube [J]. Journal of Chemical Industry and Engineering(China)(化工学报), 2008,59(S2): 70-75.
[16]
Bennett D L, Chen J C. Forced convextive boiling in vertical tubs for saturated pure components and binary mixtures [J]. AIChE Journal, 1980, 26: 454-461.
[17]
Wu J M, Zhao Jiyun. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application [J]. Progress in Nuclear Energy, 2013, 66: 13-24.
[18]
Pankaj Sharma, Il-Hyun Baek, Taehyun Cho, et al. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids [J]. Powder Technology, 2011, 208(1): 7-19.
[19]
Yu Wei, Xie Huaqing, Chen Lifei, et al. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid [J]. Thermochimica Acta, 2009, 491(1/2): 92-96.
[20]
Yu Wei, Xie Huaqing, Li Yang, et al. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid [J]. Particuology, 2011, 9: 187-191.