全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

工业规模CO2管道泄放过程中的压力响应及相态变化

DOI: 10.11949/j.issn.0438-1157.20150700, PP. 4327-4334

Keywords: 二氧化碳,管道泄放,压力响应,相变,气液两相流

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于CO2相态分别进行了气相、气液两相和超临界状态的3组工业规模CO2管道(长256m,内径233mm)泄放实验,分析了CO2管道泄放过程中的压力响应和相态转变过程。研究表明:在管道内,气相CO2泄放开始时压力发生突降,而后压降停滞或减慢;管内相态主要为气态,但管道末端温度大幅下降使该处形成气液均相CO2。泄放口位于气液界面之上的气液两相CO2泄放中,减压波多次反射并导致多次压力突降和反弹;管内相态由气液分层向气液均相转变,管道顶部和底部气液均相CO2先后向气相CO2转变。超临界CO2泄放中的压力突降和反弹发生在临界区域附近,且压力穿过临界压力时,压变速率会停滞或减慢;管内相态经历了超临界、气液均相和气相泄放3个过程。

References

[1]  IEA. Energy Technology Perspectives 2012: Pathways to a Clean Energy System[R]. 2012
[2]  Wareing C J, Fairweather M, Falle S A E G, Woolley R M. Validation of a model of gas and dense phase CO2 jet releases for carbon capture and storage application [J]. International Journal of Greenhouse Gas Control, 2014, 20: 254-271.
[3]  Koornneef J, Spruijt M, Molag M, Ramirez A, Faaij A, Turkenburg W. Uncertainties in risk assessment of CO2 pipelines [J]. Energy Procedia, 2009, 1: 1587-1594.
[4]  Duncan I J, Wang H. Estimating the likelihood of pipeline failure in CO2 transmission pipelines: new insights on risks of carbon capture and storage [J]. International Journal of Greenhouse Gas Control, 2014, 21: 49-60.
[5]  Woolley R M, Fairweather M, Wareing C J, et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain [J]. International Journal of Greenhouse Gas Control, 2014, 27: 221-238.
[6]  Woolley R M, Fairweather M, Wareing C J, et al. CO2 PipeHaz: quantitative hazard assessment for next generation CO2 pipelines [J]. Energy Procedia, 2014, 63: 2510-2529.
[7]  Rian K E, Grimsmo B, Laksa B, Vembe B E, Lilleheie N I, Brox E, Evanger T. Advanced CO2 dispersion simulation technology for improved CCS safety [J]. Energy Procedia, 2014, 63: 2596-2609.
[8]  Molag M, Dam C. Modelling of accidental from a high pressure CO2 pipelines [J]. Energy Procedia, 2011, 4: 2301-2307.
[9]  Martynov S, Brown S, Mahgerefteh H, Sundara V. Modelling choked flow for CO2 from the dense phase to below the triple point [J]. International Journal of Greenhouse Gas Control, 2013, 19: 552-558.
[10]  Brown S, Martynov S, Mahgerefteh H, Chen Shaoyun, Zhang Yongchun. Modelling the non-equilibrium two-phase flow during depressurisation of CO2 pipelines [J]. International Journal of Greenhouse Gas Control, 2014, 30: 9-18.
[11]  Ahmad M, Lowesmith B, Koeijer G D, Nilsen S, Tonda H, Spinelli C, Cooper R, Clausen S, Mendes R, Florisson O. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion [J]. International Journal of Greenhouse Gas Control, 2015, 37: 340-353.
[12]  Cosham A, Jones D G, Armstrong K, Allason D, Barnett J. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines//Proceedings of the 2012 9th International Pipeline Conference[C]. 2012.
[13]  Koeijera G d, Borch J H, Jakobsenb J, Drescher M. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization [J]. Energy Procedia, 2009, (1): 1683-1689.
[14]  Drescher M, Varholm K, Munkejord S T, Hammer M, Held R, Koeijer G d, Barnett J. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions [J]. Energy Procedia, 2014, 63: 2448-2457.
[15]  Cosham A, Jones D G, Armstrong K, Allason D, Barnett J. The decompression behaviour of carbon dioxide in the dense phase// Proceedings of the 2012 9th International Pipeline Conference[C]. 2012.
[16]  Han S H, Kim J, Chang D. An experimental investigation of liquid CO2 release through a capillary tube [J]. Energy Procedia, 2013, 37: 4724-4730.
[17]  Han S H, Chang D, Kim J, Chang W. Experimental investigation of the flow characteristics of jettisoning in a CO2 carrier [J]. Process Safety and Environmental Protection, 2014, 92: 60-69.
[18]  Xie Qiyuan, Tu Ran, Jiang Xi, Li Kang, Zhou Xuejin. The leakage behavior of supercritical CO2 flow in an experimental pipeline system [J]. Applied Energy, 2014, 130: 574-580.
[19]  Bartak J. A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water [J]. International Journal of Multiphase Flow, 1990, 16(5): 789-798.
[20]  Martynov S, Brown S, Mahgerefteh H, Sundara V, Chen Shaoyun, Zhang Yongchun. Modelling three-phase releases of carbon dioxide from high-pressure pipelines [J]. Process Safety and Environmental Protection, 2014, 92: 36-46.
[21]  Botros K K, Studzinski W, Geerligs J, Glover A. Determination of decompression wave speed in rich gas mixtures [J]. The Canadian Journal of Chemical Engineering, 2004, 82: 880-891.
[22]  Brown S, Beck J, Mahgerefteh H, Fraga E S. Global sensitivity analysis of the impact of impurities on CO2 pipeline failure [J]. Reliability Engineering and System Safety, 2013, 115: 43-54.
[23]  Lund H, Flatten T, Munkejord S T. Depressurization of carbon dioxide in pipelines-models and methods [J]. Energy Procedia, 2011, 4: 2984-2991.
[24]  Aursand E, Aursand P, Berstad T, D?rum C, Hammer M, Munkejord S T, Nordhagen H O. CO2 pipeline integrity: a coupled fluid-structure model using a reference equation of state for CO2 [J]. Energy Procedia, 2013, 37: 3113-3122.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133