全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

短程硝化过程中硝化速率与N2O产生速率的关系

DOI: 10.11949/j.issn.0438-1157.20150443, PP. 4652-4660

Keywords: 短程硝化,硝化速率,N2O产生速率,温室气体,环境,数值分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

N2O是3种主要的温室气体之一,污水的生物脱氮过程是N2O产生的一个主要人为来源。通过对不同条件下生活污水短程硝化过程中N2O的产生情况进行研究,考察了短程硝化过程中硝化速率(AOR)与N2O产生速率(N2OR)之间的关系。结果表明:随着DO水平的提高,AOR逐渐上升,N2OR则呈现先增加后减少的趋势;最大N2OR出现在DO为0.6mg·L-1时,为1.29mgN2O-N·(gMLVSS)-1·h-1。低DO水平下AOR的提高会引起N2OR的增加;但高DO水平下较高的AOR不一定产生较多的N2O。不同条件下,N2O的产生途径不同,引起N2OR的变化。在DO较低时,N2O的产生以NH2OH/NOH途径为主,AOR的提高会促进N2O产生;随着DO的增加,N2O的产生途径主要为AOB的有氧反硝化作用,此时较高的DO水平会对这一反应造成抑制,虽然反应过程中AOR较高,但N2OR处于较低水平。

References

[1]  Garbeva P, Baggs E M, Prosser J I. Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil [J]. FEMS Microbiology Letters, 2007, 266 (1): 83-89.
[2]  Shaw L J, Nicol G W, Smith Z, Fear J, et al. Nitrosospira ssp can produce nitrous oxide via a nitrifier denitrification pathway [J]. Evnironmental Microbiology, 2006, 8 (2): 214-222.
[3]  Beanmont H, Hommes N, Sayavedra-Soto L, Arp D, Arciero D, Hooper A, Westerhoff H, van Spanning R. Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite [J]. Journal of Bacteriology, 2002, 184 (9): 2557-2560.
[4]  Beanmont H, van Schooten B, Lens S, Westerhoff H, van Spanning R. Nitrosomonas europaea expresses a nitric oxide reductase during nitrification [J]. Journal of Bacteriology, 2004, 186 (13): 4417-4421.
[5]  Sutka R L, Ostrom N E, Ostrom P H, Breznak J A, Gandhi H, Pitt A J, Li F. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances [J]. Applied and Environmental Microbiology, 2006, 72 (1): 638-644.
[6]  Casciotti K L, Sigman D M, Ward B B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria [J]. Geomicrobiology Journal, 2003, 20 (4): 335-353.
[7]  Anderson J. The metabolisms of hydroxylamine to nitrite by Nitrosomonas europaea [J]. Biochemical Journal, 1964, 91: 8-17.
[8]  Liu Xiuhong (刘秀红), Peng Yi (彭轶), Ma Tao (马涛), Liu Chunhui (刘春慧), Peng Yongzhen (彭永臻). Effects of DO concentration on N2O production during nitrification for treating domestic wastewater [J]. Environmental Science (环境科学), 2008, 29 (3): 660-664.
[9]  Nogita S, Saito Y, Kuge T. A new indicator of the activated sludge process-nitrous oxide [J]. Water Science & Technology, 1981, 13: 199-204.
[10]  Hynes R K, Knowles R. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH and oxygen [J]. Canadian Journal of Microbiology, 1984, 30 (11): 1397-1404.
[11]  Tallec G, Garnier J, Billen G, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level [J]. Water Research, 2006, 40 (15): 2972-2980.
[12]  Kim J H, Guo X, Behera S K, Park H S. A unified model of ammonium oxidation rate at various initial ammonium strength and active ammonium oxidizer concentrations [J]. Bioresource Technology, 2009, 100 (7): 2118-2123.
[13]  Ostrom N E, Sutka R, Ostrom P H, Grandy A S, Huizinga K M, Gandhi H, von Fischer J C, Robertson G P. Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland [J]. Soil Biology and Biochemistry, 2010, 42 (3): 499-506.
[14]  Ahn J H, Kim S, Park H, Rahm B N, Pagilla K, Chandran K. N2O emissions from activated sludge processes, 2008—2009: results of a national monitoring survey in the United States [J]. Environ. Sci. Technol., 2010, 44 (12): 4505-4511.
[15]  Kampschreur M J, van der Star W R L, Wielders H A, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment [J]. Water Research, 2008, 42 (3): 812-826.
[16]  Yu R, Kampschreur M J, van Loosdrecht M C M, Chandran K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia [J]. Environ. Sci. Technol., 2010, 44 (4): 1313-1319.
[17]  Kampschreur M J, Tan N, Kleerebezem R, Picioreanu C, Hetten M, Loodrecht M. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture [J]. Environ. Sci. Technol., 2008, 42 (2): 429-435.
[18]  Kampschreur M J, Temmink H, Kleerebezem R, Picioreanu C, Jetten M, Loosdrecht M. Nitrous oxide emission during wastewater treatment [J]. Water Research, 2009, 43 (17): 4093-4103.
[19]  Stuven R, Bock E. Nitrification and denitrification as a source for NO and N2O production in high-strength wastewater [J]. Water Research, 2001, 35 (8): 1905-1914.
[20]  Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophic nitrifiers [J]. Biotechnology and Bioengineering, 2001, 72 (4): 416-433.
[21]  Stuven R, Vollmer M, Bock E. The impact of organic-matter on nitric-oxide formation by nitrosomonas-europaea [J]. Archives of Microbiology, 1992, 158 (6): 439-443.
[22]  Kim S W, Miyahara M, Fushinobu S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria [J]. Bioresource Technology, 2010, 101 (11): 3958-3963.
[23]  Beanmont H, Lens S, Reijinders W, Westerhoff H, van Spanning R. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor [J]. Molecular Microbiology, 2004, 54 (1): 148-158.
[24]  Beaumont H J E, Lens S I, Westerhoff H V, van Spanning R J M. Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite [J]. Journal of Bacteriology, 2005, 187 (19): 6849-6851.
[25]  Cantera J J L, Stein L Y. Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria [J]. Environmental Microbiology, 2007, 9 (3): 765-776.
[26]  Falcone A B, Shug A L, Nicholas D J D. Oxidation of hydroxylamine by particles from Nitrosomonas [J]. Biochemical and Biophysical Research Communications, 1962, 9 (1/2): 126-131.
[27]  Ritchie G A F, Nicholas D J D. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea [J]. Biochemical Journal, 1972, 126: 1181-1191.
[28]  Hooper A, Vannelli T, Bergmann D, Arciero D. Enzymology of the oxidation of ammonia to nitrite by bacteria [J]. Antonie van Leeuwenhoek, 1997, 71: 59-67.
[29]  Stein L Y, Arp D J, Berube P M, Chain P S G, Hauser L, Jetten M S M, Klotz M G, Larimer F W, Norton J M, Opden Camp H J M, Shin M, Wei X. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation [J]. Environmental Microbiology, 2007, 9 (12): 2993-3007.
[30]  Liu Yue (刘越), Peng Yi (彭轶), Li Pengzhang (李鹏章), Hou Hongxun (侯红勋), Peng Yongzhen (彭永臻). The effect of on N2O production by and NH2OH oxidation during nitritation process [J]. CIESC Journal (化工学报), 2015, 66 (3): 1133-1141.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133