全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

超声波场中蒸汽气泡凝结过程及传热特性

DOI: 10.11949/j.issn.0438-1157.20150413, PP. 4359-4365

Keywords: 凝结,强化换热,超声波,气液两相流,传热

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用高速摄像仪记录有、无超声波时注入过冷水中蒸汽气泡的凝结过程,以分析超声波对蒸汽气泡凝结过程及传热特性的影响。结果表明:在超声波场中,蒸汽气泡表面会形成晶格状毛细波,有效增加气泡表面积,并加强气泡周围流体热边界层扰动,从而导致凝结换热的强化及气泡凝结速度加快。基于15~60K过冷度下,有、无超声波时较大蒸汽气泡凝结的实验数据,拟合得出有、无超声波时的气泡凝结换热经验关联式,预测误差在±30%以内。

References

[1]  Kalman H, Mori Y H. Experimental analysis of a single vapor bubble condensing in subcooled liquid [J]. Chem. Eng. J., 2002, 85: 197-206
[2]  Yuan Dewen(袁德文), Pan Liangming(潘良明), Chen Deqi(陈德奇), Wang Xiaojun(王小军). Condensation heat transfer coefficient at vapor-liquid interface of subcooled flow boiling in vertical narrow rectangular channel [J]. Nuclear Power Engineering, 2009, 30(5): 30-34
[3]  Lucic A, Mayinger F. Transportphenomena in subcooled flow boiling [J]. Heat Mass Transfer, 2010, 46: 1159-1166
[4]  Gogate P R. Some aspects of the design of sonochemical reactors [J]. Ultrasonics Sonoshemistry, 2003, 10(6): 325-330.
[5]  Tang Jian (唐建), Jiao Xiangdong (焦向东), Dai Bo (戴波). Automatic wall thickness conversion algorithm of pipeline ultrasonic inner inspection [J]. CIESC Journal, 2014, 65(11): 4490-4496.
[6]  Sun Xiaoqing (孙晓清), Fu Weichun (符卫春), Zhang Mingduo (张明铎). Experimental study of flow rate effect on ultrasonic anti-scaling control [J]. Technical Acoustics, 2010, 29(6): 600-602.
[7]  Iida Y, Tsutsui K. Effects of ultrasonic waves on natural convection, nucleate boiling, and film boiling heat transfer from a wire to a saturated liquid [J]. Exp. Therm. Fluid Sci., 1992, 5: 108-115.
[8]  Park K A, Bergles A E. Ultrasonic enhancement of saturated and subcooled pool boiling [J]. Int. J. Heat Mass Transf., 1988, 31: 664-667.
[9]  Bartoli C, Baffigi F. Effects of ultrasonic waves on the heat transfer enhancement in subcooled boiling [J]. Exp. Therm. Fluid Sci., 2011, 35: 423-432.
[10]  Douglas Z, Boziuk T R, Smith M K, Glezer A. Acoustically enhanced boiling heat transfer [J]. Physics of Fluids, 2012, 24: 052105.
[11]  Faraday M. On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces [J]. Philosophical Transactions of the Royal Society, 1831, 121: 299-340.
[12]  Holt R G, Trinh E H. Faraday wave turbulence on a spherical liquid shell [J]. Physical Review Letters, 1996, 77(7): 1274-1277.
[13]  Ueno I, Matsumoto K, Machida A, Hanyu T. Shape oscillation of bubble(s) in acoustic field// 14th International Heat Transfer Conference [C]. USA, Washington, DC, 2010.
[14]  Makuta T, Suzuki R, Nakao T. Generation of microbubbles from hollow cylindrical ultrasonic horn [J]. Ultrasonics, 2013, 53: 196-202.
[15]  Tang Jiguo, Yan Changqi, Sun Licheng. A study visualizing the collapse of vapor bubbles in a subcooled pool [J]. International Journal of Heat and Mass Transfer, 2015, 88: 597-608.
[16]  Rayleigh J W S. The Theory of Sound [M]. New York: Dover Publications, 1975.
[17]  Qin Wei (秦炜), Yuan Yonghui (原永辉), Dai Youyuan (戴献元). Improvement of separation processes by using ultrasound [J]. Chemical Industry and Engineering Progress (化工进展), 1995, (1): 1-5.
[18]  Beek W J, Kramers H. Mass transfer with a change in interfacial area [J]. Chem. Eng. Sci., 1962, 17: 909-921.
[19]  Angelo J B, Lightfoot E N, Howard D W. Generalization of the penetration theory for surface stretch: application to forming and oscillating drops [J]. AIChE J., 1966, 12: 751-760.
[20]  Hopfinger E J, Das S P. Mass transfer enhancement by capillary waves at a liquid-vapor interface [J]. Exp. Fluids, 2009, 46: 597-605.
[21]  Isenberg J, Sideman S. Direct contact heat transfer with change of phase: bubble condensation in immiscible liquid [J]. Int. J. Heat Mass Transfer, 1970, 13(6): 997-1011.
[22]  Akiyama M. Bubble collapse in subcooled boiling [J]. Bull. JSME, 1973, 16(93): 570-575.
[23]  Zeitoun O, Shoukri M, Chatoorgoon V. Measurement of interfacial area concentration in subcooled liquid-vapor flow [J]. Nucl. Eng. Des., 152(1/2/3): 243-255.
[24]  Warrier G R, Vijay N B, Dhir K. Interfacial heat transfer during subcooled flow boiling [J]. Int. J. Heat Mass Transfer, 2002, 45(19): 3947-3959.
[25]  Kalman H, Mori Y H. Experimental analysis of a single vapor bubble condensing in subcooled liquid [J]. Chem. Eng. J., 2002, 85: 197-206.
[26]  Yuan Dewen (袁德文), Pan Liangming (潘良明), Chen Deqi (陈德奇), Wang Xiaojun (王小军). Condensation heat transfer coefficient at vapor-liquid interface of subcooled flow boiling in vertical narrow rectangular channel [J]. Nuclear Power Engineering (核动力工程), 2009, 30(5): 30-34.
[27]  Lucic A, Mayinger F. Transportphenomena in subcooled flow boiling [J]. Heat Mass Transfer, 2010, 46: 1159-1166
[28]  Kim S J, Park G C. Interfacial heat transfer of condensing bubble in subcooled boiling at low pressure [J]. Int. J. Heat Mass Transfer, 2011, 54: 2962-2974.
[29]  Issa S A, Weisensee P, Macian-juan R. Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions [J]. International Journal of Heat and Mass Transfer, 2014, 70: 918-929.
[30]  Faraday, M. On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces[J]. Philosophical Transactions of the Royal Society,1831, 121, 299–318
[31]  Holt R G, Trinh E H. Faraday Wave Turbulence on a Spherical Liquid Shell [J]. Physical Review Letters, 1996, 77(7), 1274-1277
[32]  Ueno I, Matsumoto K, A Machida, T Hanyu. Shape Oscillation of Bubble(s) in Acoustic Field [R]. 14th International Heat Transfer Conference, 2010, USA, Washington, DC
[33]  Makuta T, R. Suzuki, T. Nakao. Generation of microbubbles from hollow cylindrical ultrasonic horn [J]. Ultrasonics, 2013, 53, 196-202
[34]  Tang J G, Yan C Q, Sun L C. A study visualizing the collapse of vapor bubbles in a subcooled pool [J]. International Journal of Heat and Mass Transfer, 2015, 88: 597-608
[35]  Rayleigh J W S. The theory of sound [M], Dover Publications, New York, 1975
[36]  Qin Wei(秦炜), Yuan Yonghui(原永辉), Dai Youyuan (戴献元). Improvement of separation processes by using ultrasound [J]. Chemical Industry and Engineering Progress, 1995, 1: 1-5
[37]  Holt, R G, Trinh E H. Faraday Wave Turbulence on a Spherical Liquid Shell [J]. Physical Review Letters, 1996, 77(7): 1274-1277.
[38]  Beek W J, Kramers H. Mass transfer with a change in interfacial area [J]. Chem. Eng. Sci., 1962, 17, 909-921
[39]  Angelo J B, Lightfoot E N, Howard D W. Generalization of the penetration theory for surface stretch: application to forming and oscillating drops [J]. AIChE J., 1966, 12, 751-760
[40]  Hopfinger E J, Das SP. Mass transfer enhancement by capillary waves at a liquid-vapor interface [J]. Exp. Fluids, 2009, 46, 597-605
[41]  Isenberg J, Sideman S. Direct contact heat transfer with change of phase: bubble condensation in immiscible liquid [J]. Int. J. Heat Mass Transfer, 1970, 13(6): 997-1011
[42]  Akiyama M. Bubble collapse in subcooled boiling [J]. Bull. JSME, 1973, 16(93): 570-575
[43]  Zeitoun O, Shoukri M, Chatoorgoon V. Measurement of interfacial area concentration in subcooled liquid–vapor flow [J]. Nucl. Eng. Des., 152(1-3): 243-255
[44]  Warrier G R, Vijay N B, Dhir K. Interfacial heat transfer during subcooled flow boiling [J]. Int. J. Heat Mass Transfer, 2002, 45(19): 3947–3959
[45]  Kim S J, Park G C. Interfacial heat transfer of condensing bubble in subcooled boiling at low pressure [J]. Int. J. Heat Mass Transfer, 2011, 54: 2962-2974
[46]  Issa S A, Weisensee P, Macian-juan R. Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions [J]. International Journal of Heat and Mass Transfer, 2014, 70: 918-929

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133