全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

3种紫细菌天然光合色素敏化DSSC光电转化性能研究

, PP. 0-0

Keywords: 染料敏化太阳能电池(DSSC),细菌叶绿素,类胡萝卜素,紫细菌

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于自然界光合作用机理的DSSC研究备受关注。不产氧光合细菌中的紫细菌是研究光合作用机理的良好模式生物。本文从3种典型紫细菌中获得了7种具有不同吸光范围、极性和结构的细菌叶绿素a(BChla)和类胡萝卜素(Car)以及3种改性BChla。在此基础上,较系统的比较了天然与改性BChla、多组分与单一组分Car、BChla色素浓度、BChla和Car共敏对DSSC光电性能的影响,并对色素与半导体材料的相互作用进行了表征。结果表明:100mW·cm-2入射光强下,在不添加任何分散剂(spacer)的条件下,具有近红外吸收的天然BChla光电转化性能较优,光电转换效率为1.26%。单一组分Car比多组分Car具有较高的光电性能,玫红品Car光电转换效率最佳。BChla敏化TiO2薄膜电极,吸收光谱红移,800nm特征荧光淬灭。BChla与Car共敏TiO2薄膜电极,拓宽了可见光吸收光谱,短路电流和光电转换效率比BChla提高了12%和7.3%。紫细菌天然色素廉价易得、环境友好,不仅能吸收可见光,而且能有效利用红外光,这对研制响应可见光-近红外的太阳能电池光电器件具有重要参考价值。

References

[1]  O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740
[2]  Zhou H, Wu L, Gao Y, Ma T. Dye-sensitized solar cells using 20 natural dyes as sensitizers[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219(2-3): 188-194
[3]  Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Dye-sensitized solar cells with conversion efficiency of 11.1%[J]. Japanese Journal of Applied Physics, 2006, 45(25): 638-640
[4]  Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Gratzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056): 629-634
[5]  Zhang D, Lanier S M, Downing J A, Avent J L, Lum J, McHale J L. Betalain pigments for dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195(1): 72-80
[6]  Narayan M R. Review: Dye sensitized solar cells based on natural photosensitizers[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 208-215
[7]  Park K-H, Kim T-Y, Park J-Y, Jin E-M, Yim S-H, Choi D-Y, Lee J-W. Adsorption characteristics of gardenia yellow as natural photosensitizer for dye-sensitized solar cells[J]. Dyes and Pigments, 2013, 96(2): 595-601
[8]  Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers[J]. Solar Energy Materials and Solar Cells, 2007, 91(7): 566-571
[9]  Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O. Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells[J]. Solar Energy, 2007, 81(4): 512-516
[10]  Sandquist C, McHale J L. Improved efficiency of betanin-based dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221(1): 90-97
[11]  Liu B Q, Zhao X P, Luo W. The synergistic effect of two photosynthetic pigments in dye-sensitized mesoporous TiO2 solar cells[J]. Dyes and Pigments, 2008, 76(2): 327-331
[12]  Wang X F, Zhan C H, Maoka T, Wada Y, Koyama Y. Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1' and c2' and from Undaria pinnatifida (Wakame) [J]. Chemical physics letters, 2007, 447(1): 79-85
[13]  Wang X F, Koyama Y, Kitao O, Wada Y, Sasaki S I, Tamiaki H, Zhou H S. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes[J]. Biosensors and Bioelectronics, 2010, 25(8): 1970-1976
[14]  Wang X F, Xiang J F, Wang P, Koyama Y, Yanagida S, Wada Y, Hamada K, Sasaki S, Tamiaki H. Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers[J]. Chemical Physics Letters, 2005, 408(4-6): 409-414
[15]  Koyama Y, Miki T, Wang X F, Nagae H. Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency[J]. International Journal of Molecular Sciences, 2009, 10(11): 4575-4622
[16]  Koyama Y, Kakitani Y, Nagae H. Mechanisms of suppression and enhancement of photocurrent/conversion efficiency in dye-sensitized solar-cells using carotenoid and chlorophyll derivatives as sensitizers[J]. Molecules. 2012,17(2):2188-2218
[17]  Ito S, Saitou T, Imahori H, Uehara H, Hasegawa N. Fabrication of dye-sensitized solar cells using natural dye for food pigment: Monascus yellow[J]. Energy & Environmental Science, 2010, 3(7): 905-909 Energy target="_blank">
[18]  Petrella A, Cosma P, Curri M L, Rochira S,Agostiano A. Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study[J]. Journal of Nanoparticle Research, 2011, 13(12): 6467-6481
[19]  Sun Xuhui(孙旭辉), Bao Tana(包塔娜), Zhang Lingyun(张凌云), Zhang Guohua(张国华), Wang Weiguang(王维广). Research progress of dye-sensitized solar cells[J]. Chemical Industry and Engineering Progess(化工进展), 2012,31(1): 47-52
[20]  Wang X F, Tamiaki H. Cyclic tetrapyrrole based molecules for dye-sensitized solar cells[J]. Energy & Environmental Science, 2010, 3(1): 94-106 Energy target="_blank">
[21]  Zhuo Minquan(卓民权),Zhao Chungui (赵春贵), Cheng Qianru(程茜茹), Yang Suping (杨素萍), Qu Yinbao(曲音波). Fingerprinting analysis of photopigments in purple bacteria[J]. Acta Microbiologica Sinica(微生物学报), 2012, 52(6): 760-768
[22]  Zhao Gengui(赵艮贵),Yang Suping(杨素萍),Qu Yinbao(曲音波),Jiao Nianzhi(焦念志). Isolation and characterization of pigment-protein complexes from Rhodobacter azotoformans[J]. Acta Microbiologica Sinica(微生物学报), 2010, 50(4): 500-505
[23]  Yang Suping(杨素萍), Lian Jianke(连建科), Zhao Chungui(赵春贵), Ma Wenli(马文丽), Qu Yinbao(曲音波). Identification and phylogenetic analysis of an okenone-containing halophilic purple sulfur bacterium[J]. Acta Microbiologica Sinica(微生物学报), 2008, 48(5): 571-576
[24]  Ormerod J G, Ormerod K S, Gest H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism[J]. Archives of Biochemistry and Biophysics, 1961, 94(3): 449-463
[25]  Wu J H, Hao S C, Lan Z, Lin J M, Huang M L, Huang Y F, Li P J, Yin S, Sato T. An all-solid-state dye-sensitized solar cell-based poly (N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%[J]. Journal of the American Chemical Society, 2008, 130(35): 11568-11569
[26]  Tachibana Y, Haque S A, Mercer I P, Durrant J R, Klug D R. Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: a comparison of ruthenium bipyridyl and porphyrin sensitizer dyes[J]. The Journal of Physical Chemistry B, 2000, 104(6): 1198-1205
[27]  Wang X F, Koyama Y, Nagae H, Wada Y, Sasaki S-I, Tamiaki H. Dependence of photocurrent and conversion efficiency of titania-based solar cell on the Qy absorption and one electron-oxidation potential of pheophorbide sensitizer[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4418-4426
[28]  Kay A, Gratzel M. Artificial Photosynthesis 1: Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins[J]. The Journal of Physical Chemistry, 1993, 97(23): 6272-6277
[29]  Li L L, Diau E W. Porphyrin-sensitized solar cells[J]. Chemical Society reviews, 2013, 42(1): 291-304

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133