全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

基于局部密度估计的多模态过程故障检测

, PP. 0-0

Keywords: 多模态过程系统,局部投影保留算法,带宽优化,局部密度因子,监控模型,仿真实验

Full-Text   Cite this paper   Add to My Lib

Abstract:

以市场需求为导向的现代工业过程的生产条件要根据市场的需求不断做出调整,因此实际工业过程中存在多种工况的复杂情况,而过程的数据将不再完全服从高斯分布,其均值与协方差结构往往随着工况的切换而发生较大变化,为了能及时检测此类生产过程中的故障,提出一种新的基于带宽可变的局部密度估计的过程在线监控策略。首先利用局部投影保留(LocalityPreservingProjection,LPP)将高维数据投影到低维子空间中,充分地保留数据的局部结构;然后通过带宽可变的非参数密度核函数来进行局部密度估计,并采用局部密度因子(LocalDensityFactor,LDF)的思想构造监控统计量,进而对工业过程故障进行在线检测;最后通过仿真研究,结果表明所提方法能够有效地应用于多模态过程的故障检测。

References

[1]  Ge Zhiqiang, Song Zhihuan. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach[J]. Control Engineering Practice., 2008, 16: 1427-1437
[2]  Xie Xiang, Shi Hongbo. Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models[J]. Industrial and Engineering Chemistry Research., 2012, 51: 5497-5505
[3]  Zhang Yingwei, Chai Tianyou, Li Zhiming, Yang Chunyu. Modeling and monitoring of dynamic processes[J]. IEEE Transactions on Neural Networks., 2012, 23: 277-284
[4]  He Q Peter, Jin Wang. Fault Detection Using the k-Nearest Neighbour Rule for semiconductor Manufacturing Processes[J]. Ieee Transactions on Semiconductor Manufacturing., 2007, 20(4): 345-354
[5]  Tan Shuai, Wang Fuli, Peng Jun, Chang Yuqing, Wang S. Multimode Process Monitoring Based on Mode Identification[J]. Ind. Eng. Chem. Res., 2012, 51: 374-388
[6]  Wold S, Esbensen K, Oeladi P. Principal component analysis[J]. Chemom. Intell. Lab. Syst., 1987, 2(1/2/3): 37-52
[7]  Nomikos P, Macgregor J F, Multi-way partial least squares in monitoring batch processes[J]. Chemom. Intell. Lab. Syst., 1995, 30(1): 97-108
[8]  Zhao Shijian, Zhang Jie, Xu Yongmao. Performance monitoring of process with multiple operation modes Through multiple PLS models[J]. Journal of process Control, 2006, 16(7): 763-772
[9]  Young-Hwan Chu, S Joe Qin, Chong-hun Han. Fault Detection and Operation Mode Identification Based on Pattern Classification with Variable Selection[J]. Industrial and Engineering Chemistry Research., 2004, 43: 1701-1710
[10]  Ge Zhiqiang, Song Zhihuan. Robust monitoring and fault reconstruction based on variational inference component analysis[J]. Journal of Process Control., 2011, 21:462-474
[11]  Yu Jie. A new fault diagnosis method of multimode processes using Bayesian Inference based Gaussian mixture contribution decomposition[J]. Engineering Applications of Artificial Intelligence., 2013, 26: 456-466
[12]  Yu Jie. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science., 2012, 68: 506-519
[13]  Li Weihua, Yue H. Henry, Sergio Valle-Cervantes, Qin S. Joe. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control., 2000, 10: 471-486
[14]  Teppola Pekka, Mujunen Satu-Pia, Minkkinen Pentti. Adaptive fuzzy C-means clustering in process monitoring[J]. Chemometrics and Intelligent Laboratory Systems., 1999, 45: 23-38
[15]  Jin Hyung Dae, Lee Young-Hak, Lee Gibaek, Han Chonghun. Robust recursive principal component analysis modeling for adaptive monitoring[J]. Industrial and Engineering Chemistry Research., 2006, 45: 696-703
[16]  Ma Hehe, Hu Yi, Shi Hongbo. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes[J]. Cemom.Intell. Lab. Syst., 2012, 118: 287-300
[17]  Zhang Ni(张妮), Tian Xuemin (田学民), Cai Lianfang(蔡连芳). Non-linear process fault detection method based on RISOMAP[J]. CIESC Journal (化工学报), 2013, 64(6): 2125-2130
[18]  He Xiaofei, Niyogi Partha. Locality preserving projections[J]. Advances in neural information processing systems, 2003, 16: 153-160
[19]  Longin J L, Aleksandar L, Dragoljub P. Outlier Detection with Kernel Density Functions[C]. 5th International Conference., 2007, pp 61-75
[20]  Roussopoulos N, Kelly S , Vincent F. Nearest Neighbor Queries[C]. Proc. Acm sigmod., 1995, pp 71-79
[21]  Lee Jaeshin, Kang Bokyoung, Kang Suk-Ho. Integrating independent component analysis and local outlier factor for plant-wide process monitoring[J]. Journal of Process Control., 2011, 21: 1011-1021
[22]  Ge Zhiqiang, Song Zhihuan. Multimode process monitoring based on Bayesian method[J]. Chemometrics and Intelligent Laboratory Systems., 2009, 23: 636-650
[23]  Ricker N L. Decentralized control of the Tennessee Eastman Challenge Process[J]. Journal of Process Control. 1996 , 6: 205-221

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133