Ge Zhiqiang, Song Zhihuan. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach[J]. Control Engineering Practice., 2008, 16: 1427-1437
[2]
Xie Xiang, Shi Hongbo. Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models[J]. Industrial and Engineering Chemistry Research., 2012, 51: 5497-5505
[3]
Zhang Yingwei, Chai Tianyou, Li Zhiming, Yang Chunyu. Modeling and monitoring of dynamic processes[J]. IEEE Transactions on Neural Networks., 2012, 23: 277-284
[4]
He Q Peter, Jin Wang. Fault Detection Using the k-Nearest Neighbour Rule for semiconductor Manufacturing Processes[J]. Ieee Transactions on Semiconductor Manufacturing., 2007, 20(4): 345-354
[5]
Tan Shuai, Wang Fuli, Peng Jun, Chang Yuqing, Wang S. Multimode Process Monitoring Based on Mode Identification[J]. Ind. Eng. Chem. Res., 2012, 51: 374-388
[6]
Wold S, Esbensen K, Oeladi P. Principal component analysis[J]. Chemom. Intell. Lab. Syst., 1987, 2(1/2/3): 37-52
[7]
Nomikos P, Macgregor J F, Multi-way partial least squares in monitoring batch processes[J]. Chemom. Intell. Lab. Syst., 1995, 30(1): 97-108
[8]
Zhao Shijian, Zhang Jie, Xu Yongmao. Performance monitoring of process with multiple operation modes Through multiple PLS models[J]. Journal of process Control, 2006, 16(7): 763-772
[9]
Young-Hwan Chu, S Joe Qin, Chong-hun Han. Fault Detection and Operation Mode Identification Based on Pattern Classification with Variable Selection[J]. Industrial and Engineering Chemistry Research., 2004, 43: 1701-1710
[10]
Ge Zhiqiang, Song Zhihuan. Robust monitoring and fault reconstruction based on variational inference component analysis[J]. Journal of Process Control., 2011, 21:462-474
[11]
Yu Jie. A new fault diagnosis method of multimode processes using Bayesian Inference based Gaussian mixture contribution decomposition[J]. Engineering Applications of Artificial Intelligence., 2013, 26: 456-466
[12]
Yu Jie. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science., 2012, 68: 506-519
[13]
Li Weihua, Yue H. Henry, Sergio Valle-Cervantes, Qin S. Joe. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control., 2000, 10: 471-486
[14]
Teppola Pekka, Mujunen Satu-Pia, Minkkinen Pentti. Adaptive fuzzy C-means clustering in process monitoring[J]. Chemometrics and Intelligent Laboratory Systems., 1999, 45: 23-38
[15]
Jin Hyung Dae, Lee Young-Hak, Lee Gibaek, Han Chonghun. Robust recursive principal component analysis modeling for adaptive monitoring[J]. Industrial and Engineering Chemistry Research., 2006, 45: 696-703
[16]
Ma Hehe, Hu Yi, Shi Hongbo. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes[J]. Cemom.Intell. Lab. Syst., 2012, 118: 287-300
[17]
Zhang Ni(张妮), Tian Xuemin (田学民), Cai Lianfang(蔡连芳). Non-linear process fault detection method based on RISOMAP[J]. CIESC Journal (化工学报), 2013, 64(6): 2125-2130
[18]
He Xiaofei, Niyogi Partha. Locality preserving projections[J]. Advances in neural information processing systems, 2003, 16: 153-160
[19]
Longin J L, Aleksandar L, Dragoljub P. Outlier Detection with Kernel Density Functions[C]. 5th International Conference., 2007, pp 61-75
[20]
Roussopoulos N, Kelly S , Vincent F. Nearest Neighbor Queries[C]. Proc. Acm sigmod., 1995, pp 71-79
[21]
Lee Jaeshin, Kang Bokyoung, Kang Suk-Ho. Integrating independent component analysis and local outlier factor for plant-wide process monitoring[J]. Journal of Process Control., 2011, 21: 1011-1021
[22]
Ge Zhiqiang, Song Zhihuan. Multimode process monitoring based on Bayesian method[J]. Chemometrics and Intelligent Laboratory Systems., 2009, 23: 636-650
[23]
Ricker N L. Decentralized control of the Tennessee Eastman Challenge Process[J]. Journal of Process Control. 1996 , 6: 205-221