全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

电流密度对氯碱工业离子膜电解槽传递特性影响

DOI: 10.11949/j.issn.0438-1157.20141360, PP. 915-923

Keywords: 电解槽,电流密度,两相流,计算流体力学,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面温度和浓度为指标,考察了不同电流密度下电解槽的运行情况。结果表明:随着电流密度的增加,电解槽内液体循环量增大,膜表面温度升高,盐水浓度降低;在电流密度为4.5kA·m-2的典型工况下,电解槽内平均温度为86.39℃,膜表面平均温度为87.40℃;当电流密度提高时,可以通过降低进口溶液温度,获得与典型工况相近的电解槽内平均温度和膜表面平均温度。

References

[1]  Zhao Guorui (赵国瑞), Zhou Zijian (周子健), Feng Bo (冯博). A brief introduction to the application of ion-exchange membrane electrolyzers with the high current density [J]. Chlor-Alkali Industry (氯碱工业), 2003 (8): 9-11, 14
[2]  Yang Shanhou (杨善厚). Cause and protective measures of membrane damage in ionic membrane caustic soda production [J]. China Chlor-Alkali (中国氯碱), 2011 (1): 7-9
[3]  Asahi Kasei Corporation. Double pole zero distance between electrolytic cell [P]: JP, CN1717507. 2006-01-04
[4]  Asahi Kasei Corporation. Used for alkali metal chloride aqueous solution of electrolyzer unit slots [P]: JP, CN1364204. 2002-08-14
[5]  Zhao Guorui (赵国瑞). Application of high current density, natural circulation, bipolar-type ion-exchange membrane electrolyzers [J]. Chlor-Alkali Industry (氯碱工业), 2007 (11): 11-18
[6]  Gao Suocheng (高锁成), Zhang Wenjing (张文静). Reasons of ionic membrane bubbling and its preventive measures [J]. China Chlor-Alkali (中国氯碱), 2009 (4): 11-13
[7]  Li Xiangqing (李向青), Tian Guang (田广). Application of domestic ionic membrane electrolyzer with high electricity density [J]. China Chlor-Alkali (中国氯碱), 2008 (6): 30-31, 46
[8]  Zhang Jinbao (张金豹), Fu Qinsheng (付秦生). Control of electrolyzer temperature after capacity expansion of ion-membrane caustic soda [J]. Chlor-Alkali Industry (氯碱工业), 2013, 49 (12): 11-12, 16
[9]  Zhou Qiang (周强), Wang Qi (王奇), Jiang Yong (江泳). Research on operation technologies of Asahi Kasei NCZ zero-polar distance electrolyzers [J]. Chlor-Alkali Industry (氯碱工业), 2012, 48 (10): 13-16
[10]  Zhang Hongrui (张红瑞), Li Guoxing (李国星), Hao Shuangmei (郝双梅). Comparison of running between membrane electrode-distance electrolyzers and high-current density electrolyzers [J]. Chlor-Alkali Industry (氯碱工业), 2014, 50 (6): 12-15
[11]  Sui Yan (隋艳). The impact factors of current efficiency of ionic membrane electrolyzer [J]. Guangzhou Chemical Industry (广州化工), 2014, 42 (2): 140-141, 176
[12]  Li Zhaoyuan (李兆源), Dong Lei (董雷). Problems and solutions of ionic membrane electrolyzer operation [J]. China Chlor-Alkali (中国氯碱), 2013 (4): 5-7
[13]  Pang Zhiqiang (庞志强). Operating points of NBH-2.7 type natural circulation bipolar type high current density ion-exchange membrane electrolysis device [J]. China Chlor-Alkali (中国氯碱), 2014 (3): 10-12, 38
[14]  Zhu Jiangjun (朱江军), Zhang Zhengjiang (张正江), Luo Jingang (罗金刚). Technical reformation and running effect of NCH ion-exchange membrane electrolyzer [J]. China Chlor-Alkali (中国氯碱), 2012 (12): 5-6
[15]  Cai Dezhong (蔡德忠), Xiong Peng (熊鹏), Ma Lin (马林), Zhou Ju (周菊). Process control and running improvement of electrolyzers transformed into membrane-electrode distance type [J]. Chlor-Alkali Industry (氯碱工业), 2014, 50 (5): 6-9
[16]  Kemal Aldas. Application of a two-phase flow model for hydrogen evolution in an electrochemical cell [J]. Applied Mathematics and Computation, 2004, 154: 507-519
[17]  Mahmut D Mat, Kemal Aldas. Application of a two-phase flow model for natural convection in an electrochemical cell [J]. International Journal of Hydrogen Energy, 2005, 30: 411-420
[18]  Abbasi Farshad, Rahimzadeh Hasan. Applying a modified two-fluid model to numerical simulation of two-phase flow in the membrane chlor-alkali cells [J]. Iranian Journal of Chemistry & Chemical Engineering-International English, 2008, 27 (3): 51-61
[19]  Liu Zhongxing (刘中兴), Liu Yuxin (刘宇新), Yang Xiaoliang (杨晓亮), Liu Yuhui (刘宇慧), Xin Ran (辛然). The simulated optimization for the electrode distance of rare earth electrolytic cell [J]. Nonferrous Metals: Extractive Metallurgy (有色金属: 冶炼部分), 2011 (1): 23-25
[20]  Cheng Dianbin (程殿彬), Chen Bosen (陈伯森), Shi Xiaokui (施孝奎). The Production Technology of Ion-exchange Membrane Caustic Soda (离子膜法制碱生产技术) [M]. Beijing: Chemical Industry Press, 1998: 62
[21]  Zhang Zhaoxian (张招贤). Titanium Electrode Reaction Engineering (钛电极反应工程学) [M]. Beijing: Metallurgical Industry Press, 2009: 28
[22]  Wen Zheng (温正), Ren Yiru (任毅如). FLUENT Fluid Calculation Application Tutorial (FLUENT流体计算应用教程) [M]. Beijing: Tsinghua University Press, 2009: 12
[23]  Zhang Lianghu (张良虎). Power saving measures of electrolyzer [J]. China Chlor-Alkali (中国氯碱), 2009 (10): 36-37
[24]  Zhao Kairong (赵开荣), Qiu Manyi (邱满意), Wu Pei (吴沛). Running experience of membrane electrode distance electrolyzers made by Bluestar (Beijing) Chemical Mechanical Co., Ltd [J]. Chlor-AlkaliIndustry (氯碱工业), 2013, 49 (8): 14-15, 18
[25]  Fumio Hine, Koichi Murakami. Bubble effects on the solution IR drop in a vertical electrolyzer under free and forced convection [J]. Journal of The Electrochemical Society, 1980, 127 (2): 292-297

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133