Goodey R J, Brown C J, Rotter J M. Verification of a 3-dimensional model for filling pressures in square thin-walled silos [J]. Eng. Struct., 2003, 25: 1773-1783
[2]
Vidal P, Gallego E, Guaita M, Ayuga F. Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an eccentric hopper [J]. J. Constr. Steel Res., 2008, 64: 480-492
[3]
Goodey R J, Brown C J. The influence of the base boundary condition in modelling filling of a metal silo [J]. Comput. Struct., 2004, 82: 567-579
[4]
Zhu H P, Yu A B, Wu Y H. Numerical investigation of steady and unsteady state hopper flows [J]. Powder Technol., 2006, 170: 125-134
[5]
Wojcik M, Enstad G G, Jecmenica M. Numerical calculations of wall pressures and stresses in steel cylindrical silos with concentric and eccentric hoppers [J]. Particul. Sci. Technol., 2003, 21: 247-258
[6]
Ketterhagen W R, Hancock B C. Optimizing the design of eccentric feed hoppers for tablet presses using DEM [J]. Comput. Chem. Eng., 2010, 34: 1072-1081
[7]
Balevi?ius R, Ka?ianauskas R, Mroz Z, Sielamowicz I. Discrete element method applied to multiobjective optimization of discharge flow parameters in hoppers [J]. Struct. Multidiscip. O., 2006, 31: 163-175
[8]
Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V. A numerical study on the sensitivity of the discrete element method for hopper discharge [J]. J. Press. Ves-T ASME , 2009, 131: 031211
[9]
Vivanco F, Rica S, Melo F. Dynamical arching in a two dimensional granular flow [J]. Granular Matter., 2012, 14: 563-576
[10]
Brown R L, Richards J C. Kinematics of the flow of dry powders and bulk solids [J]. Rheol. Acta, 1965, 4: 153-165
[11]
Laforge R M, Boruff B K. Profiling flow of particles through hopper openings [J]. Ind. Eng. Chem., 1964, 56: 42-46
[12]
Zhu H P, Yu A B. Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis [J]. Granular Matter, 2005, 7: 97-107
[13]
Yu Y, Saxén H. Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres [J]. Adv. Powder Technol., 2011, 22: 324-331
[14]
Masson S, Martinez J. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations [J]. Powder Technol., 2000, 109: 164-178
[15]
Wang D, Zhou Y. Statistics of contact force network in dense granular matter [J]. Particuology, 2010, 8: 133-140
[16]
Chou C S, Chen R Y. The static and dynamic wall stresses in a circulatory two-dimensional wedge hopper [J]. Adv. Powder Technol., 2003, 14: 195-213
[17]
Zhu H P, Zhou Z Y, Yang R Y, Yu A B. Discrete particle simulation of particulate systems: a review of major applications and findings [J]. Chem. Eng. Sci., 2008, 63: 5728-5770
[18]
Vidyapati V, Subramaniam S. Granular flow in silo discharge: discrete element method simulations and model assessment [J]. Ind. Eng. Chem. Res., 2013, 52: 13171-13182
[19]
Anand A, Curtis J S, Wassgren C R, Hancock B C, Ketterhagen W R. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM) [J]. Chem. Eng. Sci., 2008, 63: 5821-5830
[20]
Nedderman R M, Tüzün U, Savage S B, Houlsby G T. The flow of granular materials (Ⅰ): Discharge rates from hoppers [J]. Chem. Eng. Sci., 1982, 37: 1597-1609
[21]
Weir G J. A mathematical model for dilating, non-cohesive granular flows in steep-walled hoppers [J]. Chem. Eng. Sci., 2004, 59: 149-161
[22]
Balevi?ius R, Ka?ianauskas R, Mróz Z, Sielamowicz I. Discrete-particle investigation of friction effect in filling and unsteady/steady discharge in three-dimensional wedge-shaped hopper [J]. Powder Technol., 2008, 187: 159-174
[23]
Langston P A, Nikitidis M S, Tüzün U, Heyes D M, Spyrou N M. Microstructural simulation and imaging of granular flows in two- and three-dimensional hoppers [J]. Powder Technol., 1997, 94: 59-72
[24]
Wu Jintao (武锦涛), Chen Jizhong (陈纪忠), Yang Yongrong (阳永荣). Microscopic analysis of particle flow in moving bed [J]. J. Zhejiang Univ.: Eng. Sci. (浙江大学学报:工学版), 2006, 40: 864-871
[25]
Wu J, Binbo J, Chen J, Yang Y. Multi-scale study of particle flow in silos [J]. Adv. Powder Technol., 2009, 20: 62-73
[26]
Xu Y, Kafui K D, Thornton C. Silo discharge simulations with different particle properties using the distinct element method [J]. T. Chinese Soc. Agr. Eng. (农业工程学报), 1999, 15: 65-69
[27]
Ketterhagen W R, Curtis J S, Wassgren C R, Hancock B C. Predicting the flow mode from hoppers using the discrete element method [J]. Powder Technol., 2009, 195: 1-10
[28]
Yang S C, Hsiau S S. The simulation and experimental study of granular materials discharged from a silo with the placement of inserts [J]. Powder Technol., 2001, 120: 244-255
[29]
Balevi?ius R, Sielamowicz I, Mróz Z, Ka?ianauskas R. Investigation of wall stress and outflow rate in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements [J]. Powder Technol., 2011, 214: 322-336
[30]
Majmudar T S, Behringer R P. Contact force measurements and stress-induced anisotropy in granular materials [J]. Nature, 2005, 435: 1079-1082
[31]
Delannay R, Louge M, Richard P, Taberlet N, Valance A. Towards a theoretical picture of dense granular flows down inclines [J]. Nature, 2007, 6: 99-108
[32]
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47-65
[33]
Asmar B N, Langston P A, Matchett A J, Walters J K. Validation tests on a distinct element model of vibrating cohesive particle systems [J]. Comput. Chem. Eng., 2002, 26: 785-802
[34]
González-Montellano C, Ramírez á, Gallego E, Ayuga F. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos [J]. Chem. Eng. Sci., 2011, 66: 5116-5126
[35]
Barreto D, O'Sullivan C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions [J]. Granular Matter, 2012, 14:1-17