全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

短程硝化过程中NO2-对NH4+及NH2OH氧化产生N2O的影响

DOI: 10.11949/j.issn.0438-1157.20141165, PP. 1133-1141

Keywords: 短程硝化,NO2-,NH2OH氧化,异养反硝化

Full-Text   Cite this paper   Add to My Lib

Abstract:

N2O是一种强效的温室气体,而污水生物脱氮过程是N2O产生的一个主要人为来源。在本研究中,向生物处理出水中投加NH4+、NH2OH及NO2-,研究了NO2-对NH4+及NH2OH氧化过程中N2O产生的影响。试验结果表明,NH4+及NH2OH氧化过程的最初30min内(总反应时间180min)产生的N2O占总N2O产生量的25%以上。在NH4+或NH2OH氧化完成前的30min内,N2O的净产生量仅有0.2mg·L-1。NH2OH的氧化是短程硝化开始阶段产生N2O的途径,此后NH4+或NH2OH氧化为AOB提供还原NO2-电子,引起的反硝化作用是产生N2O的主要途径。在实际生活污水短程硝化试验过程中,由于部分COD的存在,在低氧条件下,可能会出现异养菌的反硝化作用。同时,由于氧气及NO2-对氧化亚氮还原酶(NOS)的抑制,使得在生活污水进行短程硝化时,N2O的净产量比上述出水试验时增加了17%以上,总产量最高达到了11.07mg·L-1。这一途径对N2O产生的贡献也是不容忽视的。

References

[1]  IPCC Fifth Assessment Report. Climate Change 2013: The Physical Science Basis [R]. Stockholm, Sweden, 2013
[2]  Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century [J]. Science, 2009, 326(5949): 123-125
[3]  U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emission and Sinks: 1990—2007[R]. EPA 430-R09-004. Washington DC, 2009
[4]  Kampschreur M J, Temmink H, Kleerebezem R, Picioreanu C, Jetten M, Loosdrecht M. Nitrous oxide emission during wastewater treatment [J]. Water Research, 2009, 43(17): 4093-4103
[5]  Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophic nitrifiers [J]. Biotechnology and Bioengineering, 2001, 72(4): 416-433
[6]  Yu R, Kampschreur M J, van Loosdrecht M, Chandran K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia [J]. Environmental Science & Technology, 2010, 44(4): 1313-1319
[7]  Stuven R, Vollmer M, Bock E. The impact of organic-matter on nitric-oxide formation by Nitrosomonas europaea [J]. Archives of Microbiology, 1992, 158(6): 439-443
[8]  Stuven R, Bock E. Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater [J]. Water Research, 2001, 35(8): 1905-1914
[9]  Lu H J, Chandran K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors [J]. Biotechnology and Bioengineering, 2010, 106(3): 390-398
[10]  Vonschulthess R, Wild D, Gujer W. Nitric and nitrous oxides from denitrifying activated-sludge at low-oxygen concentration [J]. Water Science and Technology, 1994, 30(6): 123-132
[11]  Pan Y T, Ni B J, Bond P L, Ye L, Yuan Z G. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment [J]. Water Research, 2013, 47(10): 3273-3281
[12]  Tallec G, Garnier J, Billen G, Gousailles M. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level [J]. Water Research, 2006, 40(15): 2972-2980
[13]  Kim S W, Miyahara M, Fushinobu S, Wakagi T, Shoun H. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria [J]. Bioresource Technology, 2010, 101(11): 3958-3963
[14]  Burgess J E, Colliver B B, Stuetz R M, Stephenson T. Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure [J]. Journal of Industrial Microbiology & Biotechnology,2002, 29(6): 309-313
[15]  Law Y, Lant P, Yuan Z G. The effect of pH on N2O production under aerobic conditions in a partial nitritation system [J]. Water Research, 2011, 45(18): 5934-5944
[16]  Colliver B B, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers [J]. Biotechnology Advances, 2000, 18(3): 219-232
[17]  Anthonisen A C, Loehr R C, Prakasam T, Srinath E G. Inhibition of nitrification by ammonia and nitrous-acid [J]. Journal of Water Pollution Control Federation, 1976, 48(5): 835-852
[18]  Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions [J]. Water Research, 2012, 46(4): 1027-1037
[19]  Sutka R L, Ostrom N E, Ostrom P H, Breznak J A, Gandhi H, Pitt A J, Li F. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances [J]. Applied and Environmental Microbiology, 2006, 72(1): 638-644
[20]  Yu R, Kampschreur M J, van Loosdrecht M, Chandran K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia [J]. Environmental Science & Technology, 2010, 44(4): 1313-1319
[21]  Law Y, Lant P, Yuan Z G. The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture [J]. Environmental Science & Technology, 2013, 47(13): 7186-7194
[22]  Bedard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers [J]. Microbiological Reviews, 1989, 53(1): 68-84
[23]  Hall G H. Measurement of nitrification rates in lake-sediments— comparison of the nitrification inhibitors Nitrapyrin and Allylthiourea [J]. Microbial Ecology, 1984, 10(1): 25-36
[24]  Wunderlin P, Mohn J, Joss A, Siegrist H. N2O emission from biological WWT-Global relevance and pathway identification with isotopes//Proceedings of 7th IWA Leading-Edge Conference on Water and Wastewater Technologies[C]. Phoenix, AZ, USA, 2010
[25]  Kampschreur M J, Tan N, Kleerebezem R, Picioreanu C, Jetten M, Loosdrecht M. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture [J]. Environmental Science & Technology, 2008, 42(2): 429-435

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133