全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

煤催化气化工艺中内蒙王家塔烟煤灰烧结温度的影响因素分析

DOI: 10.11949/j.issn.0438-1157.20141630, PP. 1080-1087

Keywords: ,气化,催化剂,烧结温度,压差法测定技术,压力,反应气氛,蒸汽

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤催化气化工艺中碱金属催化剂的引入加剧了气化炉的结渣,直接影响了流化床气化炉结渣的正常操作。煤灰的烧结特性是流化床气化炉结渣的主要影响因素之一,通过摸索工艺条件使煤气化在烧结温度以下运行,可有效避免流化床气化炉内出现结渣问题。利用压差法测定烧结温度,结合灰渣的XRD分析结果系统研究了钾基碱金属催化剂的添加量、操作压力、反应气氛对王家塔烟煤低温灰化煤灰烧结温度的影响。结果表明,碳酸钾催化剂的添加明显降低了煤的灰熔点及烧结温度。0.1~3.5MPa下,烧结温度随压力增大而降低,而且压力对烧结温度的影响在高压区更为明显,具体影响规律与煤种灰成分及钾基碱金属催化剂的添加有关。空气、CO2氧化性气氛下的烧结温度较高,N2惰性气氛下次之,还原性气氛下较低,而蒸汽的加入显著降低了烧结温度。烧结温度的变化与不同气氛下铁离子存在状态及钾的存在形态密切相关。蒸汽气氛下,钾更多以KOH等低熔点化合物形态存在,而且含钾物相在蒸汽气氛下更容易同煤灰中的硅铝、铁钙等矿物质反应,生成低共融点化合物,致使灰熔点及烧结温度大幅下降。

References

[1]  Sami M, Annamalai K, Wooldridge M. Co-firing of coal and biomass fuel blends [J]. Prog. Energy Combust. Sci., 2001, 27(2): 171-214
[2]  Nielsen H, Frandsen F, Dam-Johansen K, Baxter L. The implications of chlorine associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26(3): 283-298
[3]  Romeo L M, Gareta R. Hybrid system for fouling control in biomass boilers [J]. Eng. Appl. Artif. Intell., 2006, 19(8): 915-925
[4]  Easterly J L, Burnham M. Overview of biomass and waste fuel resources for power production [J]. Biomass Bioenergy, 1996, 10(2): 79-92
[5]  Heinzel T, Siegle V, Spliethoff H, Hein K. Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility [J]. Fuel Process Technol., 1998, 54(1): 109-125
[6]  Bartels Malte, Lin W, Nijenhuis J, Kapteijn F, Ommen J R. Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention [J]. Progress in Energy and Combustion Science, 2008, 34(5): 633-666
[7]  Gupta S K, Gupta R P, Bryant G W, Wall T F. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels [J]. Fuel, 1998, 77(11): 1195-1201
[8]  Al-Otoom A Y, Elliott L K, Moghtaderi B, Wall T F. The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC [J]. Fuel, 2005, 84(1): 109-114
[9]  Al-Otoom A Y, Bryant G, Elliott L, Skrifvars B, Hupa M, Wall T. Experimental options for determining the temperature for the onset of sintering of coal ash [J]. Energy Fuels, 2000, 14(1): 227-233
[10]  Wang Qinhui(王勤辉), Jing Nijie(景妮洁), Luo Zhongyang(骆仲泱), Li Xiaomin(李小敏), Jie Tao(揭涛). Experiments of the effect of chemical components of coal ash on the sintering temperature [J]. Journal of China Coal Society(煤炭学报), 2010, 35(6): 1015-1020
[11]  Wang Qinhui(王勤辉), Jie Tao(揭涛), Li Xiaomin(李小敏), Luo Zhongyang(骆仲泱), Jing Nijie(景妮洁), Cen Kefa(岑可法). Experiments of the effects of reaction atmosphere on coal ash sintering temperature [J]. Journal of Fuel Chemistry and Technology (燃料化学学报), 2010, 30(1): 17-22
[12]  Jing N, Wang Q, YangY, Cheng L, Luo Z, Cen K. Influence of ash composition on the sintering behavior during pressurized combustion and gasification process [J]. Appl. Phys. Eng., 2012, 13(3): 230-238
[13]  Jing N, Wang Q, Luo Z, Cen K. Effect of different reaction atmospheres on the sintering temperature of Jincheng coal ash under pressurized conditions [J]. Fuel, 2011, 90(8): 2645-2651
[14]  Wang C, Zhang Y, Jia L, Tan Y. Effect of water vapor on the pore structure and sulphation of CaO [J]. Fuel, 2014, 130(8): 60-65
[15]  Hirsch R L, Gallageher J E, Lessard J R, Wesselhoft R D. Catalytic coal gasification: an emerging technology [J]. Science,1982, 215(1): 121-127
[16]  Nahas N C. Exxon catalytic coal gasification process [J]. Fuel, 1983, 62(2): 239-241
[17]  Mao Yandong(毛燕东), Li Kezhong(李克忠), Sun Zhiqiang(孙志强), Bi Jicheng(毕继诚), Xin Feng(辛峰), Li Jinlai(李金来). Characteristics of catalytic coal gasification in lab scale autothermal fluidized bed [J]. Journal of Chemical Engineering of Chinese Universities(高校化学工程学报), 2013, 27(5): 798-804
[18]  Mao Y, Bi J, Li J, Gan Z. A method for producing methane by catalytic gasification of coal[P]: CN, 201010532452.6. 2010-11-02
[19]  Bi J, Mao Y, Li K. Process by catalytic gasification of natural gas to a coal self-heating[P]: CN, 201210196987.X. 2012-06-15
[20]  Pan Y, Liu M, Ji C, Hu M, Wang Z. To prepare the town gas by catalytic gasification of Da-Tong coal under elevated pressure(Ⅰ): The characteristics of catalytic gasification of Da-Tong coal and its coke [J]. Journal of East China School of Chemical Engineering and Technology, 1986, 12(1): 25-33
[21]  Nahas N C. Process for the catalytic gasification of coal [P]: US, 4077778. 1978-03-07
[22]  Hippo E J, Sheth A C. Mild catalytic steam gasification process[P]: US, 2007/0000177A1. 2007-01-04
[23]  Veraa M J, Bell A T. Effect of alkali metal catalysts on gasification of coal char [J]. Fuel, 1978, 57(4): 194-200
[24]  McKee D W, Spiro C L, Kosky P G. Catalysis of coal char gasification by alkali metal salts [J]. Fuel, 1983, 62(2): 217-220
[25]  Yeboah Y D, Xu Y, Sheth A C. Catalytic gasification of coal using eutectic salts: identification of eutectics [J]. Carbon, 2003, 41(2): 203-214
[26]  Sheth A C, Yeboah Y D, Godavarty A, Sastry C. Catalytic gasification of coal using eutectic salts: reaction kinetics with binary and ternary eutectic catalysts [J]. Fuel, 2003, 82(3): 305-317
[27]  Schmitt V, Kaltschmitt M. Effect of straw proportion and Ca and Al-containing additives on ash composition and sintering of wood-straw pellets [J]. Fuel, 2013, 109(7): 551-558
[28]  Lin W, Johansen K D, Frandsen F. Agglomeration in bio-fuel fired fluidized bed combustors [J]. Chem. Eng. J., 2003, 96(2): 171-185
[29]  Yao Donglin(姚冬林), Jin Baosheng(金保升), Xiao Gang(肖刚). Review on biomass fluidized bed combustion/gasification sintering characteristic and mechanism [J]. Boiler Technology(锅炉技术), 2009, 40(4): 76-80
[30]  Khan A, De J W, Jansens P, Spliethoff H. Biomass combustion in fluidized bed boilers: potential problems and remedies [J]. Fuel Process Technol., 2009, 90(1): 21-50
[31]  Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues [J]. Prog. Energy Combust. Sci., 2005, 31(2): 171-192
[32]  Jing N, Wang Q, Cheng L, Luo Z, Cen K. The sintering behavior of coal ash under pressurized conditions [J]. Fuel, 2013, 103(1): 87-93
[33]  Li Fenghai(李风海), Huang Jiejie(黄戒介), Fang Yitian(房倚天), Wang Yang(王洋). Research on the influencing factors of sintering temperature of Xiaolongtan lignite ashes [J]. Clean Coal Technology (洁净煤技术), 2011, 17(3): 57-61
[34]  Wang L, Hustad J E, Gr?nli M. Sintering characteristics and mineral transformation behaviors of corn cob ashes [J]. Energy & Fuels, 2012, 26(8): 5905-5916
[35]  Haykiri-Acma H, Yaman S, Kucukbayrak S. Effect of biomass on temperatures of sintering and initial deformation of lignite ash [J]. Fuel, 2010, 89(10): 3063-3068
[36]  Zhang S, Chen Z, Chen X, Gong X. Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite [J]. J. Fuel Chem. Technol., 2014, 42(2): 166-174
[37]  Gupta S K, Gupta R P, Bryant G W, Wall T F. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels [J]. Fuel, 1998, 77(11): 1195-1201
[38]  Van J C, Benson S A, Laumb M L, Waanders B. Coal and coal ash characteristics to understand mineral transformations and slag formation [J]. Fuel, 2009, 88(11): 1057-1063
[39]  Blasing M, Müller M. Investigations on the influence of steam on the release of sodium, potassium, chlorine, and sulphur species during high temperature gasification of coal [J]. Fuel, 2012, 94(4): 137-143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133