Larsson Simona, Palmqvist Eva, Hahn-H?gerdal B?rbel, Tengborg Charlotte, Stenberg Kerstin, Zacchi Guido, Nilvebrant Nils-Olof. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood [J]. Enzyme and Microbial Technology, 1999, 24(3): 151-159
[2]
Horváth Ilona Sárvári, Sj?de Anders, Alriksson Bj?rn, J?nsson Leif J, Nilvebrant Nils-Olof. Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce [J]. Applied Biochemistry and Biotechnology, 2005,124(1/2/3): 1031-1044
[3]
Cavka Adnan, Alriksson Bj?rn, Ahnlund Maria, J?nsson Leif J. Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors [J]. Biotechnology and Bioengineering, 2011, 108(11): 2592-2599
[4]
Brown A. Microbial water stress [J]. Bacteriological Reviews, 1976, 40(4): 803
[5]
Horváth Ilona Sárvári, Taherzadeh Mohammad J, Niklasson Claes, Lidén Gunnar. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2001, 75(5): 540-549
[6]
Ren Baixiang(任百祥), Yang Chunwei(杨春维), Teng Honghui(滕洪辉). Research on degradation of furfural wastewater by utrasonic wave [J]. Chinese Journal of Environmental Engineering(环境工程学报), 2007, 1(10): 68-70
[7]
Soudham V P, Alriksson B, J?nsson L J. Reducing agents improve enzymatic hydrolysis of cellulosic substrates in the presence of pretreatment liquid [J]. Journal of Biotechnology, 2011, 155(2): 244-250
[8]
Larsson Simona, Quintana-Sáinz Alexis, Reimann Anders, Nilvebrant Nils-Olof, J?nsson Leif J. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae //Twenty-First Symposium on Biotechnology for Fuels and Chemicals[C]. Springer, 2000: 617-632
[9]
Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases [J]. Applied and Environmental Microbiology, 2009, 75(24): 7631-7638
[10]
Metzger Jürgen O, Hüttermann Aloys. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas [J]. Naturwissenschaften, 2009, 96(2): 279-288
[11]
Hasunuma Tomohisa, Sanda Tomoya, Yamada Ryosuke, Yoshimura Kazuya, Ishii Jun, Kondo Akihiko. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2011, 10(1): 2-13
[12]
J?nsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose: inhibitors and detoxification [J]. Biotechnol. Biofuels, 2013, 6(1): 16
[13]
Li Hongxing(李洪兴), Zhang Xiaoran(张笑然), Shen Yu(沈煜), Dong Yongsheng(董永胜), Bao Xiaoming(鲍晓明). Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose—a review [J]. Chinese Journal of Biotechnology(生物工程学报), 2009, 25(9): 1321-1328
[14]
Liu Z L, Slininger P J, Dien B S, Berhow M A, Kurtzman C P, Gorsich S W. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran [J]. Journal of Industrial Microbiology and Biotechnology, 2004, 31(8): 345-352
[15]
Zhuang Junping(庄军平), Lin Lu(林鹿), Pang Chunsheng(庞春生), Liu Ying(刘颖) , Sun Yong(孙勇).Research advances in detoxification of lignocellulose hydrolysates-making [J]. Modern Chemical Industry(现代化工), 2009(2): 19-23
[16]
Hyland P B, Mun S L S, Mahadevan R. Prediction of weak acid toxicity in Saccharomyces cerevisiae using genome-scale metabolic models [J]. Industrial Biotechnology, 2013, 9(4): 229-235
[17]
Liu Chenguang, Xue Chuang, Lin Yenhan, Bai Fengwu. Redox potential control and applications in microaerobic and anaerobic fermentations [J]. Biotechnology Advances, 2013, 31(2): 257-265
[18]
Keweloh H, Weyrauch G, Rehm H J. Phenol-induced membrane changes in free and immobilized Escherichia coli [J]. Applied Microbiology and Biotechnology, 1990, 33(1): 66-71
[19]
Pienkos P T, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates [J]. Cellulose, 2009, 16(4): 743-762
[20]
Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review [J]. Critical Reviews in Biotechnology, 2011, 31(1): 20-31
[21]
Larsson S, Cassland P, J?nsson L J. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase [J]. Applied and Environmental Microbiology, 2001, 67(3): 1163-1170
[22]
Gorsich S W, Dien B S, Nichols N N, Slininger P J, Liu Z, Skory C D. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2006, 71(3): 339-349
[23]
Alriksson B, Cavka A, J?nsson L J. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents [J]. Bioresource Technology, 2011, 102(2): 1254-1263
[24]
Wang Na(王娜), Liu Chenguang(刘晨光), Yuan Wenjie(袁文杰). ORP control on very high gravity ethanol fermentation [J].CIESC Journal(化工学报), 2012, 63(4): 1168-1174
[25]
Wahlbom C F, Hahn-H?gerdal B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2002, 78(2): 172-178