全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

Ir0.5Pt0.5O2阳极的电催化活性及氧化电解水制备

DOI: 10.11949/j.issn.0438-1157.20141176, PP. 992-1000

Keywords: Ir0.5Pt0.5O2复合材料,电解,析氯,析氧,反应动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化电解水作为一种新型、高效、环保的杀菌剂,具有广阔的应用前景。但目前在氧化电解水制备过程中,其阳极电催化材料存在效率低和使用寿命短等问题。采用亚当斯融合法制备了Ir0.5Pt0.5O2复合氧化物电极。通过XRD表征,其晶型为典型的金红石型结构。SEM结果表明虽然颗粒之间存在团聚现象,但是可以明显观察到大量蜂窝状结构存在,提高了催化剂的比表面积和电化学面积。进一步的CV表征证明了这一点,同时在CV图中表现出明显的铂铱复合氧化物结构的特征。利用LSV技术分别考察了Ir0.5Pt0.5O2的析氯和析氧极化曲线,发现其单位表观面积上析氯活性明显提高,而析氧活性明显降低。计算表明Ir0.5Pt0.5O2的析氯反应Tafel斜率为56.3mV·dec-1,反应机理为Volmer-Heyrovsky机理,速控步骤为电化学脱附步骤;其析氧反应Tafel斜率为126.6mV·dec-1,控速步骤为催化剂表面氢氧化物的形成。进一步电化学阻抗实验表明在1g·L-1NaCl溶液中,Ir0.5Pt0.5O2析氯电催化活性优于IrO2,这与前面研究结果一致。在此基础上,以Ir0.5Pt0.5O2/Ti为阳极制备氧化电解水,在相同条件下,其有效氯含量明显优于IrO2/Ti,同时电解效率也明显提高,强化试验寿命是IrO2/Ti的3.14倍,大大提高了电极性能,有利于其商品化使用。

References

[1]  Fenner D C, Bürge B, Kayser H P, Wittenbrink M M. The anti-microbial activity of electrolysed oxidizing water against microorganisms relevant in veterinary medicine [J]. J. Vet. Med. B Infect. Dis. Vet. Public Health, 2006, 53 (3): 133-137
[2]  Robinson G M, Lee S W H, Greenman J, Salisbury V C, Reynolds D M. Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores [J]. Lett. Appl. Microbiol., 2010, 50 (3): 289-294
[3]  Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: effect of oral administration on mouse digestive tract and changes in body weight [J]. Arch. Oral. Biol., 2011, 56 (4): 359-366
[4]  Park G W, Boston D M, Kase J A, Sampson M N, Sobsey M D. Evaluation of liquid- and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus [J]. Appl. Environ. Microbiol., 2007, 73 (14): 4463-4468
[5]  Keskinen L A, Burke A, Annous B A. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves [J]. Int. J. Food Microbiol., 2009, 132 (2/3): 134-140
[6]  Xie J, Sun X H, Pan Y J, Zhao Y. Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp [J]. Food Control, 2012, 23 (2): 320-324
[7]  Rahman S M E, Wang J, Oh D H. Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork [J]. Food Control, 2013, 30 (1): 176-183
[8]  Ren Zhandong (任占冬), Zhu Yuchan (朱玉婵), Liu Ye (刘晔), Zhang Zhiyong (张智勇), Zhang Qi (张奇). Electrolyzed potential water sterilizing technics and mechanism on pork stuffing [J]. Transactions of the Chinese Society for Agricultural Machinery (农业机械学报), 2009, 40 (12): 139-143
[9]  Zhu Yuchan (朱玉婵), Ren Zhandong (任占冬), Liu Ye (刘晔), Zhang Zhiyong (张智勇). Sterilization characteristics of electrolyzed-oxidizing water and its sterilizing effect for meat [J]. CIESC Journal (化工学报), 2009, 60 (10): 2583-2589
[10]  Cao W, Zhu Z W, Shi Z X, Wang C Y, Li B M. Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs [J]. Int. J. Food Microbiol., 2009, 130 (2): 88-93
[11]  Graca A, Abadias M, Salazar M, Nunes C. The use of electrolyzed water as a disinfectant for minimally processed apples [J]. Postharvest Biol. Tec., 2011, 61 (2/3): 172-177
[12]  Xiong K, Liu H J, Li L T. Product identification and safety evaluation of aflatoxin B1 decontaminated by lectrolyzed oxidizing water [J]. J. Agric. Food Chem., 2012, 60 (38): 9770-9778
[13]  Zhang Houcheng (张后成), Zhu Yuchan (朱玉婵), Ren Zhandong (任占冬), Pan Deng (潘登), Liu Ye (刘晔), Wang Yourong (王又容), Chai Bo (柴波). Sterilizing effect and mechanism of neutral electrolyzed oxidizing water on cabbage [J]. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 2013, 29 (22): 277-283
[14]  Huang Y R, Hung Y C, Hsu S Y, Huang Y W, Hwang D F. Application of electrolyzed water in the food industry [J]. Food Control, 2008, 19 (4): 329-345
[15]  Trieu V, Schley B, Nattera H, Kintrup J, Bulan A, Hempelmann R. RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity [J]. Electrochim. Acta, 2012, 78: 188-194
[16]  Cao H Z, Lu D H, Lin J P, Ye Q, Wu J J, Zheng G Q. Novel Sb-doped ruthenium oxide electrode with ordered nanotube structure and its electrocatalytic activity toward chlorine evolution [J]. Electrochim. Acta, 2013, 91: 234-239
[17]  Neodoa S, Rosestolato D, Ferro S, Battisti A D. On the electrolysis of dilute chloride solutions: influence of the electrode material on Faradaic efficiency for active chlorine, chlorate and perchlorate [J]. Electrochim. Acta, 2012, 78: 282-291
[18]  Hu W, Chen S L, Xia Q H. IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium [J]. Int. J. Hydrogen Energy, 2014, 39 (13): 6967-6976
[19]  Xu J Y, Liu G Y, Li J L, Wang X D. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction [J]. Electrochim. Acta, 2012, 59: 105-112
[20]  Hu W, Wang Y Q, Hu X H, Zhou Y Q, Chen S L. Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium [J]. J. Mater. Chem., 2012, 22: 6010-6016
[21]  Ye Z G, Meng H M, Sun D B. New degradation mechanism of Ti/IrO2+MnO2 anode for oxygen evolution in 0.5M H2SO4 solution [J]. Electrochim. Acta, 2008, 53: 5639-5643
[22]  Stoyanova A, Borisov G, Lefterova E, Slavcheva E. Oxygen evolution on Ebonex-supported Pt-based binary compounds in PEM water electrolysis [J]. Int. J. Hydrogen Energy, 2012, 37 (21): 16515-16521
[23]  Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials [J]. ACS Catal., 2012, 2 (8): 1765-1772
[24]  Adams R, Shriner R L. Platinum oxide as a catalyst in the reduction of organic compounds Ⅲ preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate [J]. J. Am. Chem. Soc., 1923, 45: 2171-2179
[25]  Song S D, Zhang H M, Ma X P, Shao Z G, Zhang Y N, Yi B L. Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell [J]. Electrochem. Commun., 2006, 8: 399-405
[26]  Ferro S, Battisti A D. Electrocatalysis and chlorine evolution reaction at ruthenium dioxide deposited on conductive diamond [J]. J. Phys. Chem. B, 2002, 106: 2249-2254
[27]  Ye Z G, Meng H M, Chen D, Yu H Y, Huan Z S, Wang X D, Sun D B. Structure and characteristics of Ti/IrO2(x)+MnO2(1-x) anode for oxygen evolution [J]. Solid State Sciences, 2008, 10: 346-354
[28]  Macounova K, Makarova M, Krtil P. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2-δ electrodes-DEMS approach to reaction mechanism determination [J]. Electrochem. Commun., 2009, 11: 1865-1868
[29]  Tsuji E, Imanishi A, Fukui K, Nakato Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution [J]. Electrochim. Acta, 2011, 56: 2009-2016
[30]  Zhu Yuchan (朱玉婵), Ren Zhandong (任占冬), Liu Ye (刘晔), Chen Hongmei (陈红梅). Sterilizing effect and neutral electrolyzed oxidizing water [J]. Chin. J. Public. Health (中国公共卫生), 2011, 27 (6): 805-806
[31]  Ren Zhandong (任占冬), Zhu Yuchan (朱玉婵), Liu Ye (刘晔), Zhou Xiaorong (周晓荣), Zhang Zhiyong (张智勇). Sterilizing effect and mechanism of electrolyzed water [J]. Chin. J. Prev. Med. (中华预防医学), 2008, 8: 578-581
[32]  Thorn R M S, Lee S W H, Robinson G M, Greenman J, Reynolds D M. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in health care environments [J]. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31 (5): 641-653
[33]  Gulabivala K, Stock C J R, Lewsey J D, Ghori S, Ng Y L, Spratt D A. Effectiveness of electrochemically activated water as an irrigant in an infected tooth model [J]. Int. Endod. J., 2004, 37 (9): 624-631
[34]  Chittoria R K, Yootla M, Sampatrao L M, Raman S V. The role of super oxidized solution in the management of diabetic foot ulcer: our experience [J]. Nepal. Med. Coll. J., 2007, 9: 125-128
[35]  Vorobjeva N V, Vorobjeva L I, Khodjaev E Y. The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections [J]. Artif. Organs., 2004, 28 (6): 590-592
[36]  Koide S, Shitanda D, Note M, Cao W. Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot [J]. Food Control, 2011, 22 (2/3): 452-456
[37]  McCarthy S, Burkhardt III W. Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces [J]. Food Control, 2012, 24 (1/2): 214-219
[38]  Petrykin V, Macounová K, Okubea M, Mukerjeec S, Krtil P. Local structure of Co doped RuO2 nano crystalline electrocatalytic materials for chlorine and oxygen evolution [J]. Catalysis Today, 2013, 202: 63-69
[39]  Santana M H P, Faria A D L. Oxygen and chlorine evolution on RuO2+TiO2+CeO2+Nb2O5 mixed oxide electrodes [J]. Electrochim. Acta, 2006, 51: 3578-3585
[40]  Hansen H A, Man I C, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J. Electrochemical chlorine evolution at rutile oxide (110) surfaces [J]. Phys. Chem. Chem. Phys., 2010, 12: 283-290
[41]  Guerrini E, Consonni V, Trasatti S. Surface and electrocatalytic properties of well-defined and vicinal RuO2 single crystal faces [J]. J. Solid State Electrochem., 2005, 9: 320-329

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133