全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

毛细管内气液Taylor流动的气泡及阻力特性

DOI: 10.11949/j.issn.0438-1157.20141622, PP. 942-948

Keywords: Taylor气泡,气液两相流,数值模拟,毛细管,相对坐标系

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用相对坐标系方法,研究毛细管(d2mm)内充分发展垂直上升气液Taylor流动,分析两种工作介质下Taylor气泡的形状、上升速度、液膜厚度以及压降特性。结果表明:随着两相表观速度(Vtp)增大,Taylor气泡长度增大,气泡尾部曲率半径增大。气泡长度及内部回流区随着气泡体积分数(ξg)增大而增大,量纲1液膜厚度与气泡上升速度与毛细数(Ca)正相关,模拟结果与经验公式吻合较好。摩擦阻力因子(fc)随Vtp与ξg的增大而降低,N2/乙二醇为工质的Taylor流动fc低于单相情况,而N2/水为工质的Taylor流动fc高于单相情况。Kreutzer等的流型依赖公式以及Lockhart等的分离模型可较好预测本文的两相压降,模拟结果与预测值的误差在±10%以内,常规通道所推荐C5仍然适用于本文毛细管情况。

References

[1]  Kreutzer M T, Kapteijn F, Moulijn J A, et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries [J]. AIChE Journal, 2005, 51 (9): 2428-2440
[2]  Liu H, Vandu C O, Krishna R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop [J]. Industrial & Engineering Chemistry Research, 2005, 44 (14): 4884-4897
[3]  Han Y, Shikazono N. Measurement of liquid film thickness in micro square channel [J]. International Journal of Multiphase Flow, 2009, 35 (10): 896-903
[4]  Dang Minhui (党敏辉), Ren Mingyue (任明月), Chen Guangwen (陈光文). Effect of microchannel inlet configuration on Taylor bubble formation in microreactors [J]. CIESC Journal (化工学报), 2014, 65 (3): 805-812
[5]  Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel [J]. Chemical Engineering Science, 2006, 61 (23): 7609-7625
[6]  Shao N, Salman W, Gavriilidis A, et al. CFD simulations of the effect of inlet conditions on Taylor flow formation [J]. International Journal of Heat and Fluid Flow, 2008, 29 (6): 1603-1611
[7]  He Xiao (贺潇), Che Defu (车得福). CFD simulation of wall shear stress in vertical and inclined upward slug gas-liquid flow [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59 (6): 1390-1395
[8]  Taha T, Cui Z. Hydrodynamics of slug flow inside capillaries [J]. Chemical Engineering Science, 2004, 59 (6): 1181-1190
[9]  Zheng D, He X, Che D. CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow [J]. International Journal of Heat and Mass Transfer, 2007, 50 (21): 4151-4165
[10]  Araújo J D P, Miranda J M, Campos J B L M. Flow of two consecutive Taylor bubbles through a vertical column of stagnant liquid—a CFD study about the influence of the leading bubble on the hydrodynamics of the trailing one [J]. Chemical Engineering Science, 2013, 97: 16-33
[11]  Asadolahi A N, Gupta R, Fletcher D F, et al. CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow [J]. Chemical Engineering Science, 2011, 66 (22): 5575-5584
[12]  Irandoust S, Andersson B. Liquid-film in taylor flow through a capillary [J]. Industrial & Engineering Chemistry Research, 1989, 28 (11): 1684-1688
[13]  Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube [J]. Physics of Fluids (1994-present), 2000, 12 (10): 2367-2371
[14]  Leung S S, Gupta R, Fletcher D F, et al. Effect of flow characteristics on Taylor flow heat transfer [J]. Industrial & Engineering Chemistry Research, 2011, 51 (4): 2010-2020
[15]  Taylor G I. Deposition of a viscous fluid on the wall of a tube [J]. Journal of Fluid Mechanics, 1961, 10 (2): 161-165
[16]  Warnier M J F, de Croon M, Rebrov E V, et al. Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers [J]. Microfluidics and Nanofluidics, 2010, 8 (1): 33-45
[17]  Walsh E, Muzychka Y, Walsh P, et al. Pressure drop in two phase slug/bubble flows in mini scale capillaries [J]. International Journal of Multiphase Flow, 2009, 35 (10): 879-884
[18]  Lockhart R, Martinelli R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes [J]. Chem. Eng. Prog., 1949, 45 (1): 39-48

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133