全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

水冷壁气化炉内熔渣流动特性模型

DOI: 10.11949/j.issn.0438-1157.20141321, PP. 888-895

Keywords: 熔渣,流动,气化,颗粒流,颗粒行为,热阻

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过将3D气化炉模型、熔渣一维流动传热模型和颗粒壁面捕捉模型耦合,对工业水煤浆水冷壁气化炉内的熔渣流动特性进行模型研究。重点分析了颗粒壁面行为对气化炉结渣的影响以及氧煤比变化对于渣层厚度的影响,并简要分析了水冷壁气化炉和耐火砖气化炉的差异。研究结果表明:大粒径颗粒易于被壁面捕捉,利于穹顶和直筒段渣层的形成,但不利于碳转化率的提高;小粒径颗粒具有高碳转化率,是下游细灰的主要来源,容易加剧下游受热面和灰黑水系统的负担;水冷壁气化炉内形成的固态渣层是气化炉热阻的主要组成部分,能够起到"以渣抗渣"的作用。

References

[1]  Kumar M, Ghoniem A F. Multiphysics simulation of entrained flow gasification (Ⅱ): Constructing and validating the overall model [J]. Energy & Fuels, 2012, 26: 464-479
[2]  Ni J J, Guo Q H, Yu G S, Zhou Z J, Wang F C. Submodel for predicting slag deposition formation in slagging gasification systems [J]. Energy & Fuels, 2011, 25: 1004-1009
[3]  Tominaga F, Yamashita T, Ando T, Asahiro N. Simulator development of entrained flow coal gasifiers at high temperature and high pressure atmosphere [J]. IFRF Combustion Journal, 2000: Article No. 20004
[4]  Yang Z W, Wang Z, Wu Y X, Wang J H, Lv J F, Li Z, Ni W D. Dynamic model for an oxygen-staged slagging entrained flow gasifier [J]. Energy & Fuels, 2011, 25: 3646-3656
[5]  Smith I W. The combustion rates if coal chars: a review//19th Symposium International on Combustion [C]. The Combustion Institute, Pittsburgh, 1982: 1045-1065
[6]  Abani N, Ghoniem A F. Large eddy simulations of coal gasification in an entrained flow gasifier [J]. Fuel, 2013, 104: 664-680
[7]  Sun B, Liu Y, Chen X, et al. Dynamic modeling and simulation of shell gasifier in IGCC[J]. Fuel Processing Technology, 2011, 92 (8): 1418-1425
[8]  Yong S Z, Gazzino M, Ghoniem A F. Modeling the layer built-up in solid fuel gasification and combustion-formation and sensitivity analysis [J]. Fuel, 2012, 92 (1): 162-170
[9]  Bi Dapeng (毕大鹏), Guan Qingliang (管清亮), Xuan Weiwei (玄伟伟), Zhang Jiansheng (张建胜), Yue Guangxi (岳光溪). Numerical simulation of GSP gasifier based on double-mixture fractions PDF model [J]. CIESC Journal (化工学报), 2014, 65 (10): 3753-3759
[10]  Gong X, Lu W X, Guo X L, Dai Z H, Liang Q F, Liu H F, Zhang H L, Guo B G. Pilot-scale comparison investigation of different entrained-flow gasification technologies and prediction on industrial-scale gasification performance [J]. Fuel, 2014, 129: 37-44
[11]  Wu Y X, Zhang J S, Smith P J, Zhang H, Charles R, Lv J F, Yue G X. Three-dimensional simulation for an entrained flow coal slurry gasifier [J]. Energy & Fuels, 2010, 24: 1156-1163
[12]  Chen C X, Masayuki H, Kojima T. Use of numerical modeling in the design and scale-up of entrained flow coal gasifier [J]. Fuel, 2001, 80: 1513-1523
[13]  Kumar M, Ghoniem A F. Multiphysics simulation of entrained flow gasification (Ⅰ): Validating the nonreacting flow solver and the particle turbulent dispersion model [J]. Energy & Fuels, 2012, 26: 451-463
[14]  Li S, Wu Y, Whitty K J. Ash deposition behavior during char-slag transition under simulated gasification conditions [J]. Fuel, 2006, 85 (2): 170-178
[15]  Seggiani M. Modeling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier [J]. Fuel, 1998, 77 (14): 1611-1621
[16]  Bockelie M J, Denison M K, Chen Z M, Temi L, Senior C L, Sarofim A F. CFD modeling for entrained flow gasifiers in vision 21 system [OL]. http://www.reaction-eng.com, 2003
[17]  Mills K C, Rhine J M. The measurement and estimation of the physical properties of slags formed during coal gasification (Ⅱ): Properties relevant to heat transfer [J]. Fuel, 1989, 68 (7): 904-910
[18]  Rezaei H R, Gupta R P, Bryant G W, et al. Thermal conductivity of coal ash and slags and models used [J]. Fuel, 2000, 79 (13): 1697-1710
[19]  NIST Chemistry WebBook [DB]. http://webbook.nist.gov/chemistry/ #Models
[20]  Yang Zhiwei (杨志伟). Dynamic modeling of entrained flow gasifiers [D]. Beijing: Tsinghua University, 2014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133