全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

非热等离子体烃类燃料氧化重整反应器的研究进展

DOI: 10.11949/j.issn.0438-1157.20141133, PP. 872-879

Keywords: 等离子体,火花放电,滑动弧放电,反应器,燃料,制氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

燃料氧化重整(部分氧化)为温和的放热反应,其反应速率快、能耗低,特别适用于在线制取氢气或富氢气体。大气压非热等离子体为燃料氧化重整提供了一种应用前景广泛的新技术,展现了对燃料具有普适性、快速响应和反应器紧凑高效等优点。综述了大气压非热等离子体烃类燃料氧化重整反应器的研究进展,着重阐述了火花和滑动弧放电产生的暖等离子体及其烃类燃料重整反应器。与电晕和介质阻挡放电产生的冷等离子体反应器相比,暖等离子体反应器具有燃料转化率高和能耗低的优点。

References

[1]  Kalra C S, Gutsol A F, Fridman A A. Gliding arc discharges as a source of intermediate plasma for methane partial oxidation [J]. IEEE Transactions on Plasma Science, 2005, 33 (1): 32-41
[2]  Gallagher M J. Partial oxidation and autothermal reforming of heavy hydrocarbon fuels with non-equilibrium gliding arc plasma for fuel cell applications [D]. Philadelphia: Drexel University, 2010
[3]  Czernichowski A, Czernichowski M, Czernichowski P, Cooley T E. Reforming of methane into syngas in a plasma-assisted reactor [J]. Fuel Chemistry Division Preprints, 2002, 47 (1): 280-281
[4]  Nozaki T, Hattori A, Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor [J]. Catalysis Today, 2004, 98 (4): 607-616
[5]  Piavis W, Turn S. An experimental investigation of reverse vortex flow plasma reforming of methane [J]. International Journal of Hydrogen Energy, 2012, 37 (22): 17078-17092
[6]  Chen J, Davidson J H. Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions [J]. Plasma Chemistry and Plasma Processing, 2002, 22 (2): 199-224
[7]  Nunnally T, Gutsol K, Rabinovich A, Fridman A, Starikovsky A, Gutsol A, Potter R W. Dissociation of H2S in non-equilibrium gliding arc "tornado" discharge [J]. International Journal of Hydrogen Energy, 2009, 34 (18): 7618-7625
[8]  Czernichowski A, Czernichowski M, Wesolowska K. Glidarc-assisted production of synthesis gas from biogas//1st European Hydrogen Energy Conference [C]. Grenoble, France, 2003
[9]  Kossitsyn M, Gutsol A, Fridman A. Generation and diagnostics of non-equilibrium plasma in gliding arc discharge//16th International Symposium on Plasma Chemistry [C].Taormina, Italy, 2003
[10]  Lee D H, Kim K T, Cha M S, Song Y H. Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane [J]. Proceedings of the Combustion Institute, 2007, 31 (2): 3343-3351
[11]  Xu G F, Ding X W. Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane [J]. Energy, 2012, 47 (1): 333-339
[12]  Zhao T L, Liu J L, Li X S, Liu J B, Song Y H, Xu Y, Zhu A M. Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow [J]. Physics of Plasmas, 2014, 21 (5): 053507
[13]  Li X D, Zhang H, Yan S X, Yan J H, Du C M. Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor [J]. IEEE Transactions on Plasma Science, 2013, 41 (1): 126-132
[14]  Yu L, Yan J H, Tu X, Ni M J, Chi Y, Li X D, Lu S Y. Three working patterns of gliding arc in tornado [J]. IEEE Transactions on Plasma Science, 2011, 39 (11): 2832-2833
[15]  Bromberg L, Cohn D R, Rabinovich A, Alexeev N, Samokhin A V, Hadidi K, Palaia J E, Bel N M. Onboard plasmatron hydrogen production for improved vehicles [R]. Massachusetts Institute of Technology, Plasma Science and Fusion Center, JA-06-3, 2006
[16]  Gallagher M J, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A. On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas [J]. Fuel, 2010, 89 (6): 1187-1192
[17]  Shekhawat D, James J S, David B. Fuel cells: technologies for fuel processing//Gallagher M J, Fridman A. Plasma Reforming for H2-rich Synthesis Gas [M]. Oxford: Elsevier, 2011: 223-259
[18]  Holladay J D, Hu J, King D L, Wang Y. An overview of hydrogen production technologies [J]. Catalysis Today, 2009, 139 (4): 244-260
[19]  Shapovalova O V, Chun Y N, Lim M S, Shmelev V M, Arutyunov V S. Syngas and hydrogen production from biogas in volumetric (3D) matrix reformers [J]. International Journal of Hydrogen Energy, 2012, 37 (19): 14040-14046
[20]  He Jinbo (何金波), Fang Jianwei (房建威), Wen Guangdong (闻光东), Ma Jie (马杰), Su Baogen (苏宝根), Xing Huabin (邢华斌), Ren Qilong (任其龙). Progress on reforming of carbon dioxide and methane to synthesis gas by thermal plasma [J]. CIESC Journal (化工学报), 2013, 64 (3): 779-787
[21]  Petitpas G, Rollier J D, Darmon A, Gonzalez Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies [J]. International Journal of Hydrogen Energy, 2007, 32 (14): 2848-2867
[22]  Zhu B, Li X S, Shi C, Liu J L, Zhao T L, Zhu A M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma [J]. International Journal of Hydrogen Energy, 2012, 37 (6): 4945-4954
[23]  Bromberg L, Cohn D R, Rabinovich A, Surma J E, Virden J. Compact plasmatron-boosted hydrogen generation technology for vehicular applications [J]. International Journal of Hydrogen Energy, 1999, 24 (4): 341-350
[24]  Bromberg L, Cohn D, Rabinovich A, O'brie C, Hochgreb S. Plasma reforming of methane [J]. Energy & Fuels, 1998, 12 (1): 11-18
[25]  Tu X, Gallon H J, Whitehead J C. Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge [J]. Catalysis Today, 2013, 211: 120-125
[26]  Kraus M, Eliasson B, Kogelschatz U, Wokaun A. CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis [J]. Physical Chemistry Chemical Physics, 2001, 3 (3): 294-300
[27]  Sobacchi M, Saveliev A, Fridman A, Kennedy L A, Ahmed S, Krause T. Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels [J]. International Journal of Hydrogen Energy, 2002, 27 (6): 635-642
[28]  Pietruszka B, Heintze M. Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma [J]. Catalysis Today, 2004, 90 (1/2): 151-158
[29]  Borra J P. Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration [J]. Journal of Physics D: Applied Physics, 2006, 39 (2): R19
[30]  Luche J, Aubry O, Khacef A, Cormier J M. Syngas production from methane oxidation using a non-thermal plasma: experiments and kinetic modeling [J]. Chemical Engineering Journal, 2009, 149 (1/2/3): 35-41
[31]  Zhu B, Li X S, Liu J L, Zhu A M. Optimized mixed reforming of biogas with O2 addition in spark-discharge plasma [J]. International Journal of Hydrogen Energy, 2012, 37 (22): 16916-16924
[32]  Li X S, Lin C K, Shi C, Xu Y, Wang Y N, Zhu A M. Stable kilohertz spark discharges for high-efficiency conversion of methane to hydrogen and acetylene [J]. Journal of Physics D: Applied Physics, 2008, 41 (17): 175203
[33]  Liu J L, Li X S, Zhu X, Li K, Shi C, Zhu A M. Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade [J]. Chemical Engineering Journal, 2013, 234: 240-246
[34]  Zhao T L, Xu Y, Song Y H, Li X S, Liu J L, Liu J B, Zhu A M. Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra [J]. Journal of Physics D: Applied Physics, 2013, 46 (34): 345201
[35]  Bo Z, Yan J H, Li X D, Chi Y, Cen K F. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion [J]. Internation Journal of Hydrogen Energy, 2008, 33 (20): 5545-5553
[36]  Liu Yana (刘亚纳), Yan Jianhua (严建华), Li Xiaodong (李晓东), Dai Shangli (戴尚莉), Cen Kefa (岑可法). Degradation of Acid Orange Ⅱ solution by gas-liquid gliding arc discharge [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59 (1): 221-227
[37]  Lesueur H, Czernichowski A, Chapelle J. Device for generating low-temperature plasmas by formation of sliding electric discharges [P]: FR, 2639172. 1988-11-17
[38]  Bromberg L, Cohn D, Rabinovich A, Alexeev N. Hydrogen manufacturing using low current, non-thermal plasma boosted fuel converters [R]. Massachusetts Institute of Technology, Plasma Science and Fusion Center, RR-01-1, 2001
[39]  Bromberg L, Cohn D, Rabinovich A, Heywood J. Emissions reductions using hydrogen from plasmatron fuel converters [J]. International Journal of Hydrogen Energy, 2001, 26 (10): 1115-1121
[40]  Kalra C S, Gutsol A F, Fridman A A. Gliding arc discharges as a source of intermediate plasma for methane partial oxidation [J]. IEEE Transactions on Plasma Science, 2005, 33 (1): 32-41

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133