全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

超临界流体技术构建壳聚糖纳米粒/PLLA-PEG-PLLA复合微粒及其表征

DOI: 10.11949/j.issn.0438-1157.20141349, PP. 1565-1576

Keywords: 超临界流体,共载载体,聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物,壳聚糖,复合材料,造粒

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用离子凝胶法和超临界强制分散悬浮液(SpEDS)技术制备具有核壳型结构的壳聚糖纳米粒(CSNPs)/聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物(PLLA-PEG-PLLA)复合微粒,考察和优化了壳聚糖纳米粒和复合微粒的制备条件,并对二者的理化性质和细胞毒性进行研究。结果表明,壳聚糖纳米粒的制备优化条件为壳聚糖浓度2mg·ml-1、pH5.0、三聚磷酸钠浓度1mg·ml-1。溶剂/非溶剂比为复合微粒粒径的显著影响因素,复合微粒的制备优化条件为油相浓度5mg·ml-1、水油比0.75:10.00、溶液流速2ml·min-1、溶剂/非溶剂比0.5:1.0。优化条件制得的复合微粒粒径为323.7nm,透射电镜(TEM)显示其具有核壳型结构。理化表征结果显示壳聚糖与三聚磷酸钠发生作用,但制备工艺前后材料官能团未发生明显变化,而且复合微粒中PLLA-PEG-PLLA晶型更加均匀;不同浓度组的CSNPs/PLLA-PEG-PLLA复合微粒(0.25、0.50和1.00mg·ml-1)的细胞相对增殖率分别为105.3%、101.9%和100.9%,细胞毒性分级为0级,表明具有核壳结构的CSNPs/PLLA-PEG-PLLA复合微粒生物相容性良好,有望进一步应用于共载基因和抗癌药物的抗癌活性研究。

References

[1]  Li C Y, Ma C, Wang F, Xi Z J, Wang Z F, Deng Y, He N Y. Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites [J]. Journal of Nanoscience and Nanotechnology, 2012, 12(4): 2964-2972
[2]  Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma L A, Wood G C. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform [J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9(4): 474-491
[3]  Wang Wei (汪伟), Xie Rui (谢锐), Ju Xiaojie (巨晓洁), Chu Liangyin (褚良银). Recent progress of microfluidic fabrication of novel functional microparticles [J]. CIESC Journal(化工学报), 2014, 65(7): 2555-2562
[4]  Kamata K, Lu Y, Xia Y N. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores [J]. Journal of the American Chemical Society, 2003, 125(9): 2384-2385
[5]  Yang Y Y, Wang Y, Powell R, Chan P. Polymeric core-shell nanoparticles for therapeutics [J]. Clinical and Experimental Pharmacology and Physiology, 2006, 33(5/6): 557-562
[6]  Chen A Z, Li Y, Chau F T, Lau T Y, Hu J Y, Zhao Z, Mok D K W. Microencapsulation of puerarin nanoparticles by poly(L-lactide) in a supercritical CO2 process [J]. Acta Biomaterialia, 2009, 5(8): 2913-2919
[7]  Creixell M, Peppas N A. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance [J]. Nano Today, 2012, 7(4): 367-379
[8]  Huang H C, Barua S, Sharma G, Dey S K, Rege K. Inorganic nanoparticles for cancer imaging and therapy [J]. Journal of Controlled Release, 2011, 155(3): 344-357
[9]  Saad M, Garbuzenko O B, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer [J]. Nanomedicine, 2008, 3(6): 761-776
[10]  Zhang Yingying (张莹莹), Chen Jianming (陈建明). Existing problems and strategies in liposome-mediated nucleic acid delivery [J]. Pharmaceutica Sinica(药学学报), 2011, 46(3): 261-268
[11]  Lee K Y. Chitosan and its derivatives for gene delivery [J]. Macromolecular Research, 2007, 15(3): 195-201
[12]  Xu Q X, Xia Y J, Wang C H, Pack D W. Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy [J]. Journal of Controlled Release, 2012, 163(2): 130-135
[13]  Liu Y G, Sun X Z, Wang S B, Xie M B, Chen A Z, Long R M. Preparation of nanoparticles embedded microcapsules (NEMs) and their application in drug release [J]. Materials Letters, 2012, 75: 48-50
[14]  Palm M D, Goldman M P. Patient satisfaction and duration of effect with PLLA: a review of the literature [J]. Journal of Drugs in Dermatology, 2009, 8(10): S15-S20
[15]  Bala I, Hariharan S, Kumar M. PLGA nanoparticles in drug delivery: the state of the art [J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2004, 21(5): 387-422
[16]  Wang H J, Zhao P Q, Su W Y, Wang S, Liao Z Y, Niu R F, Chang J. PLGA/polymeric liposome for targeted drug and gene co-delivery [J]. Biomaterials, 2010, 31(33): 8741-8748
[17]  Cao S S, Chen J R, Hu J. The fabrication and progress of core-shell composite materials [J]. Australian Journal of Chemistry, 2009, 62(12): 1561-1576
[18]  Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W N, Hsieh J T, Nguyen K T. In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery [J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2010, 6(5): 672-680
[19]  Sun C, Lee J S H, Zhang M Q. Magnetic nanoparticles in MR imaging and drug delivery [J]. Advanced Drug Delivery Reviews, 2008, 60(11): 1252-1265
[20]  Prosapio V, Reverchon E, De Marco I. Antisolvent micronization of BSA using supercritical mixtures carbon dioxide plus organic solvent [J]. Journal of Supercritical Fluids, 2014, 94: 189-197
[21]  Kang Y Q, Zhao C, Chen A Z, Wang S B, Liu Y G, Wu W G, Su X Q. Study of lysozyme-loaded poly-L-lactide (PLLA) porous microparticles in a compressed CO2 antisolvent process [J]. Materials, 2013, 6(8): 3571-3583
[22]  Chen A Z, Li L, Wang S B, Lin X F, Liu Y G, Zhao C, Wang G Y, Zhao Z. Study of Fe3O4-PLLA-PEG-PLLA magnetic microspheres based on supercritical CO2: preparation, physicochemical characterization, and drug loading investigation [J]. Journal of Supercritical Fluids, 2012, 67: 139-148
[23]  Reverchon E, Adami R, Cardea S, Porta G D. Supercritical fluids processing of polymers for pharmaceutical and medical applications [J]. Journal of Supercritical Fluids, 2009, 47(3): 484-492
[24]  Deng Aihua (邓爱华), Chen Aizheng (陈爱政), Wang Shibin (王士斌), Wang Mingzong (王明宗). Preparation and characterization of silk fibroin nanoparticles by SEDS process [J]. Chemical Industry and Engineering Progress(化工进展), 2014, 33(6): 1506-1512
[25]  Yu Jian (余坚), He Jiasong (何嘉松). Fundamental issues for microfoaming polymers with supercritical CO2 technology [J]. Scientia Sinica:Chimica(中国科学:化学), 2010, 40(1): 1-15
[26]  Yang Xindu (杨心督), Chen Han (陈汉), Zhang Huizhu (张惠珠), Gao Fuping (高福平), Wang Yinsong (王银松), Zhang Qiqing (张其清). Preparation of self-assembled monomethoxy poly(ethylene glycol)-grafted-chitosan nanoparticles [J]. Chinese Journal of New Drugs(中国新药杂志), 2007, 16(21): 1780-1783,1787
[27]  Chen A Z, Li Y, Chau F T, Lau T Y, Hu J Y, Zhao Z, Mok D K W. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles [J]. Journal of Supercritical Fluids, 2009, 49(3): 394-402
[28]  Chen A Z, Li L, Wang S B, Zhao C, Liu Y G, Wang G Y, Zhao Z. Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2 [J]. Journal of Supercritical Fluids, 2012, 67: 7-13
[29]  Kang Y Q, Yin G F, Ouyang P, Huang Z B, Yao Y D, Liao X M, Chen A Z, Pu X M. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS) [J]. Journal of Colloid and Interface Science, 2008, 322(1): 87-94
[30]  Dudhani A R, Kosaraju S L. Bioadhesive chitosan nanoparticles: preparation and characterization [J]. Carbohydrate Polymers, 2010, 81(2): 243-251
[31]  Xu Y M, Du Y M. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles [J]. International Journal of Pharmaceutics, 2003, 250(1): 215-226
[32]  Chen A Z, Wang G Y, Wang S B, Li L, Liu Y G, Zhao C. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2 [J]. International Journal of Nanomedicine, 2012, 7: 3013-3022
[33]  Li Guoming (李国明), Ye Junsheng (叶俊生), Deng Guohong (郑国红), Liu Cong (刘聪), Wang Chaoyang (汪朝阳). Preparation of levodopa-chitosan microspheres and the drug-release performance [J]. Chinese Journal of Applied Chemistry(应用化学), 2007, 24(9): 1602-1605
[34]  Narita J, Katagiri M, Tsuji H. Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly (L-lactic acid) crystallization, 2-effects of poly (D-lactic acid) concentration [J]. Macromolecular Materials and Engineering, 2013, 298(3): 270-282
[35]  Zhang Yanhui (张艳辉), Deng Jianguo (邓建国), Huang Yigang (黄奕刚). Preparation of phase change material EGDS/PMMA core-shell microcapsules [J]. Chemical Industry and Engineering Progress(化工进展), 2012, 31(3): 580-585
[36]  Kang Y Q, Yang C, Ouyang P, Yin G F, Huang Z B, Yao Y D, Liao X M. The preparation of BSA-PLLA microparticles in a batch supercritical anti-solvent process [J]. Carbohydrate Polymers, 2009, 77(2): 244-249

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133