全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

天然气水合物降压联合井壁加热开采的数值模拟

DOI: 10.11949/j.issn.0438-1157.20141258, PP. 1544-1550

Keywords: 天然气水合物,降压,加热,模型,数值模拟,实验验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

降压法开采天然气水合物会受到储层传热的明显影响。降压联合井壁加热开采天然气水合物是将降压和热激两种方法综合使用,由此建立了天然气水合物降压联合井壁加热开采的数学模型,通过数值模拟手段对实验室尺度下的降压联合井壁加热法开采天然气水合物进行了模拟研究。模型得到了实验数据的较好验证。进一步的模拟结果表明:井壁加热能够给区域内提供热量并有效提高温度,有助于改善天然气水合物的产气,降压联合井壁加热开采方式下的产气优于纯降压开采情形。但同时由于传热方向和导热等限制,井壁加热的作用范围和对产气率的提高有限。不同井壁加热温度下的产气率变化较小,对产气率的影响几乎可以忽略。此外,联合开采方式下边界传热对天然气水合物的产气影响较大,可能影响此方法在低地热梯度环境下实际储藏的开采使用。

References

[1]  Tang L G, Li X S, Feng Z P, Li G, Fan S S. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs [J].Energy & Fuels, 2007, 21(1): 227-233
[2]  JOGMEC, 2013. http: //www.jogmec.go.jp/news/release/content/ 300099843. pdf
[3]  JOGMEC, 2013. http: //www.jogmec.go.jp/news/release/ content/ 300100617.pdf
[4]  Gerami S, Pooladi-Darvish M. Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid [J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 146-164
[5]  Li G, Moridis G J, Zhang K N, Li X S. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu area of South China Sea [J]. Energy & Fuels, 2010, 24(11): 6018-6033
[6]  Ahn T, Kang J M, Lee J, Park C. Experimental investigation of methane hydrate reformation under dissociation process [J]. InternationalJournal of Offshore and Polar Engineering, 2010, 20(1): 68-71
[7]  Seol Y, Myshakin E. Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor [J]. Energy & Fuels, 2011, 25(3): 1099-1110
[8]  Ahn T, Park C, Lee J, et al. Experimental characterization of production behaviour accompanying the hydrate reformation in methane-hydrate-bearing sediments [J]. Journal of Canadian Petroleum Technology, 2012, 51(1): 14-19
[9]  Falser S, Uchida S, Palmer A C, Soga K, Tan T S. Increased gas production from hydrates by combining depressurization with heating of the wellbore [J]. Energy & Fuels, 2012, 26(10): 6259-6267
[10]  Pooladi D M. Gas production from hydrate reservoirs and its modeling [J]. Journal of Petroleum Technology, 2004, 56(6): 65-71
[11]  Kowalsky M B, Moridis G J. Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media [J]. Energy Conversion and Management, 2007, 48(6): 1850-1863
[12]  Kurihara M, Funatsu K, Ouchi H, Masuda Y, Yamamoto K, Narita H, et al. Analyses of production tests and MDT tests conducted in Mallik and Alaska methane hydrate reservoirs//the Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008) [C]. Vancouver, British Columbia, Canada, 2008
[13]  Sun X, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media [J]. Chemical Engineering Science, 2006, 61(11): 3476-3495
[14]  Ruan X K, Song Y C, Liang H F, Yang M J, Dou B L. Numerical simulation of the gas production behavior of hydrate dissociation by depressurization in hydrate-bearing porous medium [J]. Energy & Fuels, 2012, 26(3): 1681-1694
[15]  Selim M S, Sloan E D. Hydrate dissociation in sediment [J]. SPE (Society of Petroleum Engineers)Reservoir Engineering, 1990, 5(2): 245-251
[16]  Selim M S, Sloan E D. Heat and mass transfer during the dissociation of hydrate in porous media [J]. AIChE Journal, 1989, 35(6): 1049-1052
[17]  Kurihara M, Sato A, Ouchi H, Narita H, Masuda Y, Saeki T, Fujiii T. Prediction of gas productivity from Eastern Nankai Trough methane-hydrate reservoirs [J]. SPE Reservoir Evaluation Engineering, 2009, 12(3): 477-499
[18]  Moridis G J, Reagan M T. Strategies for gas production from ocean class 3 hydrate accumulations// the Proceedings of the Offshore Technology Conference [C]. Houston, Texas, USA, 2007
[19]  Masuda Y, Fujinaga S, Naganawa S, Naganawa S, Fujita H, Sato T, Hayashi Y. Modeling and experimental studies on dissociation of methane gas hydrates in Berea Sandstone cores//the 3rd International Conference on Gas Hydrates [C]. Salt Lake City, Utah, 1999: 18-32
[20]  Kumar A, Maini B, Bishoi P R, Clarke M. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media [J]. Journal of Petroleum Science and Engineering, 2010, 70(1/2): 114-122
[21]  Konno Y, Oyama H, Nagao J, Masuda Y, Kurihara M. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan [J]. Energy & Fuels, 2010, 24(12): 6353-6358
[22]  Corey A T. The interrelation between oil and gas relative permeabilities [J]. Producers Monthly, 1954, 19(1): 38-41
[23]  Kim H C, Bishnoi P R, Heidemann R A, Rizvi S H. Kinetics of methane hydrate decomposition [J]. Chemical Engineering Science, 1987, 42(7): 1645-1653
[24]  Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases [M]. 3rd ed. Boca Raton: CRC Press, 2008
[25]  Ertekin T, Abou-Kassem J H, King G R. Basic Applied Reservoir Simulation [M]. Richardson: Society of Petroleum Engineers, 2001
[26]  Song Y C, Liang H F. 2-D numerical simulation of natural gas hydrate decomposition through depressurization by fully implicit method [J]. ChinaOceanEngineering, 2009, 23(3): 529-542
[27]  Ruan X K, Yang M J, Song Y C, Liang H F, Li Y H. Numerical studies of hydrate dissociation and gas production behavior in porous media during depressurization process [J]. Journal of Natural Gas Chemistry, 2012, 21(4): 381-392

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133