全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

离子组成对氧化石墨烯在饱和多孔介质中迁移行为的影响

DOI: 10.11949/j.issn.0438-1157.20141542, PP. 1484-1490

Keywords: 氧化石墨烯,粒子,离子组成,多孔介质,迁移行为,模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用室内饱和石英砂柱一维渗流模拟实验,研究离子强度相同、离子组成(钠吸附比)不同的电解质溶液对氧化石墨烯(GO)在地下环境中迁移行为的影响。通过测定GO穿透过程的沉积动力学曲线,结合数学模型与界面化学理论,对其迁移沉积机理进行分析。结果显示,当钠吸附比从0增加到∞时,砂柱出流最大浓度升高,GO回收率增加,穿透实验沉积速率、去除效率和吸附效率分别从0.356min-1、1.04×10-2、0.054减小到0.039min-1、1.1×10-3、0.003。研究认为布朗扩散是造成GO颗粒与石英砂粒相互接触的主要机制,Ca2+浓度变化是造成不同钠吸附比环境下GO不同迁移行为的主要因素,其机理在于Ca2+与GO发生电中和与桥接作用,改变了颗粒间的静电斥力与引力平衡,进而影响了GO颗粒粒度与形态,并最终强化了砂柱对GO的截留效应。

References

[1]  Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of grapheme oxide [J]. Chemical Society Reviews, 2010, 39(1): 228-240
[2]  Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper [J]. Nature, 2007, 448(7752): 457-460
[3]  Hu W B, Peng C, Li X M, Zhang Y J, Chen N, Fan C H, Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide [J]. ACS Nano, 2011, 5(5): 3693-3700
[4]  Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotechnology, 2009, 4(4): 217-224
[5]  Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S, Chhowalla M. Atomic and electronic structure of grapheme oxide [J]. Nano Letters, 2009, 9(3): 1058-1063
[6]  Farid A, Debora F R. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study [J]. Journal of Hazardous Materials, 2013, 256/257: 33-39
[7]  Wang K, Jing R, Hua S, Zhang J L, Wo Y, Guo S W, Xia D. Biocompatibility of graphene oxide [J]. Nanoscale Research Letters, 2011, 6(8): 1-8
[8]  Vallabani N S, Mittal S, Shukla R K, Pandey A K, Dhakate S R, Pasricha R, Dhawan A. Toxicity of graphene in normal human lung cells(BEAS-2B) [J]. Journal of Biomedical Nanotechnology, 2011, 7(1): 106-107
[9]  Pham N H, Swatske D P, Harwell J H, Shiau B J, Papavassiliou D V. Transport of nanoparticles and kinetics in packed beds: a numerical approach with lattice Boltzmann simulations and particle tracking [J]. International Journal of Heat and Mass Transfer, 2014, 72: 319-328
[10]  Hammers J L, Julian G A, Hassellov M. Geographically distributed classification of surface water chemical parameters influencing fateand behavior of nanoparticles and colloid facilitated contaminant transport [J]. Water Research, 2013, 47(14): 5350-5361
[11]  Yang X Y, Lin S H, Wiesner M R. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media [J]. Journal of Hazardous Materials, 2014, 264: 161-168
[12]  Lanphere J D, Corey J L, Sharon L W. Effects of solution chemistry on the transport of graphene oxide in saturated porous media [J]. Environmental Science & Technology, 2013, 47(9): 4255-4261
[13]  Qi Z C, Zhang L L, Wang F, Hou L, Chen W. Factors controlling transport of grapheme oxide nanoparticles in saturated sand columns [J]. Environmental Toxicology and Chemistry, 2014, 33(5): 998-1004
[14]  Lucia F, Xu S P. Deposition and remobilization of graphene oxide within saturated sand packs [J]. Journal of Hazardous Materials, 2012, 235: 194-200
[15]  Akbour R A, Amal H A, Douch J, Jada A, Hamdani M. Transport and retention of humic acid through natural quartz sand: influence of the ionic strength and the nature of divalent cation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 436: 589-598
[16]  Akaighe N, Depner S W, Banerjee S, Sohn M. Transport and deposition of suwannee river humic acid/natural organic matter formed silvernano particles on silica matrices: the influence of solution pH and ionic strength [J]. Chemosphere, 2013, 92(4): 406-412
[17]  Jiang X J, Hyunjung K. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media [J]. Journal of Colloid and Interface Science, 2012, 386: 34-43
[18]  Xu S P, Qian L, Saiers J E. Straining of non-spherical colloids in saturated porous media [J]. Environmental Science & Technology, 2008, 42(3): 771-778
[19]  Bao C L, Song L, Xing W Y. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch based melt blending [J]. Journal of Materials Chemistry, 2012, 22(13): 6088-6096
[20]  Li Ji(李吉), Wei Tong(魏彤), Yan Jun(闫俊), Long Conglai(龙从来), Fan Zhuangjun(范壮军). Preparation of graphene nanosheet/CoS2 composite and its application in supercapacitors [J]. CIESC Journal (化工学报), 2014, 65(7): 2849-2854
[21]  Kretzschmar R, Barmettler K, Daniel G, Yan Y D, Borkovec M, Sticher H. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media [J]. Water Resources Research, 1997, 33(5): 1129-1137
[22]  Yao K, Habibin M T, Omelia C R. Water and wastewater filtration: concepts and applications [J]. Environmental Science & Technology, 1971, 5(11): 1105-1112
[23]  Logan B E, Jewett D G, Arnold R G, Bouwer E J, Omelia C R. Clarification of clean-bed filretion models [J].Journal of Environmental Engineering, 1995, 121(12): 869-882
[24]  Tufenkji A, Elimelech M. Correlation equation for predicting single collector efficiency in physicochemical filtration in saturated porous media [J]. Environmental Science & Technology, 2004, 38(2): 529- 536
[25]  Rachid A A, Jama D, Mohamed H, Philippe S. Transport of kaolinite colloids through quartz sand: influence of humic acid, Ca2+, and trace metals [J]. Journal of Colloid and Interface Science, 2002, 253(1): 1-8
[26]  Fabrice C, Porel G, Delay F. Transport and retention of clay particles in saturated porous media: influence of ionic strength and pore velocity [J]. Journal of Contaminant Hydrology, 2001, 49(1/2): 1-21
[27]  Kretzschmar R, Sticher H. Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals [J]. Environmental Science & Technology, 1997, 31: 3497-3504
[28]  Tanzina R, Jessica G, Heather J S. Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration [J]. Science of the Total Environment, 2013, 463: 565-571
[29]  Zhuang J, Qi J, Jin Y. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property [J]. Environmental Science & Technology, 2005, 39(20): 7853-7859
[30]  Park S J, Lee K S, Gulay B, Cai W W, Sonbinh T N, Rodney S R. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking [J]. ASC Nano, 2008, 2(3): 572-578

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133