全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

CO2微细通道流动沸腾换热干涸特性

DOI: 10.11949/j.issn.0438-1157.20141500, PP. 1676-1682

Keywords: 二氧化碳,微细通道,两相流,成像,干涸

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对二氧化碳作为制冷剂在微细通道内两相流沸腾换热进行了实验与理论研究,采用红外成像观测与传热系数实验研究,定量与定性地分析了热通量2~35kW·m-2,饱和温度-10~10℃工况时,内径为1、2、3mm圆管内的传热系数。实验结果表明:当质量流率增加时干涸起始干度逐渐降低,当质量流率小于临界值时,干涸现象结束之后,传热系数随着质量流率增加基本维持不变,而当质量流率大于临界值时,干涸现象结束之后,随着质量流率增加传热系数相应增加;随着管径增加,干涸发生的质量流率越小,临界热通量越大,同时管径越小传热系数越高。

References

[1]  Yun R, Kim Y. Post-dryout heat transfer characteristics in horizontal mini-tubes and a prediction method for flow boiling of CO2 [J]. International Journal of Refrigeration, 2009, 32 (5): 1085-1091
[2]  Dang C B, Haraguchi N, Hihara E. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube [J]. International Journal of Refrigeration, 2010, 33 (4): 655-663
[3]  Li Liansheng (李连生).Research progress on alternative refrigerants and their development trend [J].Journal of Refrigeration (制冷学报),2011, 32 (12): 53-58
[4]  Oh H K, Son C H. Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter [J]. Applied Thermal Engineering, 2011, 31 (2/3): 163-172
[5]  Yun R, Kim Y C, Kim M S,Choi Y D.Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube [J]. International Journal of Heat and Mass Transfer, 2003, 46 (13):2353-2361
[6]  Hashimoto K, Kiyotani A. Experimental study of pure CO2 heat transfer during flow boiling inside horizontal tubes//6th IIR Gustav-Lorentzen Conference on Natural Working Fluids [C] .Glasgow, UK, 2004:239-247
[7]  Oh H K, Ku H G, Roh G S, Son C H, Park S J. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube [J]. Applied Thermal Engineering, 2008, 28 (8):1022-1030
[8]  Yoon S H, Cho E S, Hwang Y W,Kim M S,Min K D,Kim Y C. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development [J]. International Journal of Refrigeration, 2004, 27 (2): 111-119
[9]  Cheng L X, Ribatski G, Thome J R. New prediction methods for CO2 evaporation inside tube (Ⅱ): An updated general flow boiling heat transfer model based on flow patterns [J]. International Journal of Heat and Mass Transfer, 2008, 51 (1): 125-135
[10]  Ducoulombie M, Colasson S. Carbon dioxide flow boiling in a single microchannel (Ⅱ): Heat transfer [J]. Experimental Thermal and Fluid Science, 2011, 35 (4): 597-611
[11]  Bredesen A M, Hafner A, Pettersen J, Neksa P, Aflekt K. Heat transfer and pressure drop for in-tube evaporation of CO2//Proceedings of the International Conference on Heat Transfer Issues in Natural Refrienrants [C]. Maryland: University of Maryland, 1997: 1-15
[12]  Jeong S, Jeong D, Lee J J. Evaporating heat transfer and pressure drop inside helical coils with the refrigerant carbon dioxide//21st IIR International Congress of Refrigeration [C]. Washington DC,USA , 2003:32-39
[13]  Pettersen J. Flow vaporization of CO2 in microchannel tubes [J]. Experimental Thermal and Fluid Science, 2004, 28 (2): 111-121
[14]  Yun R, Kim Y, Kim M S. Flow boiling heat transfer of carbon dioxide in horizontal mini tubes [J]. International Journal of Heat and Fluid Flow, 2005, 26 (5): 801-809
[15]  Yun R, Kim Y, Kim M S. Convective boiling heat transfer characteristics of CO2 in microchannels [J]. International Journal of Heat and Mass Transfer, 2005, 48 (2):235-242
[16]  Kandlikar S G. Fundamental issues related to flow boiling in minichannels and microchannels [J]. Experimental Thermal and Fluid Science, 2001, 26 (2): 389-407
[17]  Kew P A, Cornwell K. Correlations for the prediction of boiling heat transfer in small-diameter channels [J]. Applied Thermal Engineering, 1997, 17 (8): 705-715
[18]  Harirchian T. Two-phase flow and heat transfer in microchannels [D]. West Lafayette, IN: Purdue University, 2010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133