全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

十字交叉微通道内微液滴生成过程的数值模拟

DOI: 10.11949/j.issn.0438-1157.20141899, PP. 1633-1641

Keywords: 微流体学,两相流,计算流体力学,微液滴,流型

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用VOF模型对十字交叉微通道内微液滴的生成进行三维数值模拟,获得了拉伸挤压、滴状剪切、单分散射流等单分散微液滴的生成机制以及紊乱射流、节状形变流、管状流和滑移流等两相流型,模拟与实验结果相吻合验证了模拟的有效性。液液两相流型主要受两相流速、两相界面张力以及连续相黏度的影响,发现随着连续相的流量增大,微液滴的生成尺寸减小,生成频率增大;而离散相流量的影响则相反。两相表面张力与连续相黏度分别在低连续相Ca数和高连续相Ca数条件下分别起主导作用。在低连续相Ca数(Ud0.03m·s-1)下,微液滴的生成尺寸随着连续相黏度的增大而减小,微液滴的生成频率变化则相反。另外,壁面接触角在拉伸挤压流型下对微液滴生成无太大影响,但在滴状剪切和单分散射流流型下,接触角减小会导致微液滴无法稳定生成。

References

[1]  Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature, 2005, 437 (7057): 376-380
[2]  Mardis E R. The impact of next-generation sequencing technology on genetics [J]. Trends in Genetics, 2008, 24 (3): 133
[3]  Ho Cheung S, Sauret A, Fernandez-Nieves A, et al. Corrugated interfaces in multiphase core-annular flow [J]. Physics of Fluids, 2010, 22 (8): 082002
[4]  Wang Peng (王澎), Chen Bin (陈斌). Numerical simulation of micro-droplet breakup in T-shaped micro-fluidic chip [J]. CIESC Journal (化工学报), 2012, 63 (4): 999-1003
[5]  Ling Zhiyong (凌智勇), Zhuang Zhiwen (庄志文), Ding Jianning (丁建宁), et al. Numerical simulation and characteristics study of pressure-driven flow in microtubes [J]. Machinery Design and Manufacture (机械设计与制造), 2007 (10): 37-39
[6]  Lu Yutao, Fu Taotao, et al. Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity [J]. Chemical Engineering Science, 2014, 105: 213-219
[7]  Fu Taotao, Denis Funfschilling, et al. Scaling the formation of slug bubbles in microfluidic flow-focusing devices [J]. Microfluid Nanofluid, 2010, 8 (4): 467-475
[8]  Wei Lijuan (魏丽娟), Zhu Chunying (朱春英), et al. Experimental measurement and correlation of droplet size in T-junction microchannels [J]. CIESC Journal (化工学报), 2013, 64 (2): 517-523
[9]  Xu J H, Li S W,et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping [J]. Microfluid Nanofluid, 2008 (5): 711-717
[10]  Gordon F Christopher, N Nadia Noharuddin, et al. Experimental observations of the squeezing-to-dripping transitionin T-shaped microfluidic junctions [J]. Physical Review E, 2008, 78 (3): 036317
[11]  Kim C, Chung S, Kim Y E , et al. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid [J]. Lab Chip, 2011, 11 (2): 246-252
[12]  Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream [J]. Langmuir, 2000, 16 (2): 347-351
[13]  Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels [J]. Applied Physics Letters, 2003, 82 (3): 364-366
[14]  Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels [J]. Physical Review Letters, 2003, 90 (14): 144505
[15]  Garstecki P, Gitlin I, DiLuzio W, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device [J]. Applied Physics Letters, 2004, 85 (13): 2649-2651
[16]  Takeuchi S, Garstecki P, Weibel D B, et al. An axisymmetric flow-focusing microfluidic device [J]. Advanced Materials, 2005, 17 (8): 1067-1072
[17]  Yobas L, Martens S, Ong W-L, et al. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets [J]. Lab Chip, 2006, 6 (8): 1073-1079
[18]  Ong W L, Hua J, Zhang B, et al. Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry [J]. Sensors and Actuators A: Physical, 2007, 138 (1): 203-212
[19]  Wang W H, Zhang Z L, Xie Y N, et al. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere [J]. Langmuir, 2007, 23 (23): 11924-11931
[20]  Li W, Young E W K, Seo M, et al. Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators[J]. Soft Matter, 2008, 4 (2): 258-262
[21]  Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles [J]. Lab Chip, 2008, 8 (2): 287-293
[22]  Funfschilling D, Debas H, Li H Z, et al. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics [J]. Physical Review E, 2009, 80 (1): 015301
[23]  Zhou Chunfeng, Yue Pengtao, Feng J J. Formation of simple and compound drops in microfluidic devices [J]. Physics of Fluids, 2006, 18 (9): 092105
[24]  Cubaud T, Mason T G. Capillary threads and viscous droplets in square microchannels [J]. Physics of Fluids, 2008, 20 (5): 053302
[25]  Liu Haihu, Zhang Yonghao. Droplet formation in microfluidic cross-junctions [J]. Physics of Fluids, 2011, 23 (8): 082101
[26]  Chen Bin, Guo Fang, Li Guojie, Wang Peng. Three-dimensional simulation of bubble formation through a microchannel T-junction [J]. Chemical Engineering Technology, 2013, 36 (12): 1-15
[27]  Sur A, Lixin Y, Dong L, et al. Experimental and numerical investigation of two-phase patterns in a cross-junction microfluidic chip//8th International Conference on Nanochannels, Microchannels and Minichannels [C]. Montreal, Candan, 2010
[28]  Kim L S, Jeong H K, Ha M Y, et al. Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method [J]. Journal of Mechanical Science and Technology, 2008, 22 (4): 770-779

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133