全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

循环捕集CO2后煅烧石灰石的硫化特性

DOI: 10.11949/j.issn.0438-1157.20141700, PP. 1912-1918

Keywords: H2S吸收,CaO,碳酸化/煅烧,硫化,CO2捕集,制氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

ZEC(zeroemissioncoal)系统中,粗煤气进入碳酸化/重整炉前需先脱除H2S,提出利用经过多次碳酸化/煅烧捕集CO2循环的煅烧石灰石(CaO)脱除H2S,并研究循环碳酸化/煅烧次数、硫化温度、H2S浓度和微观结构对循环CaO硫化特性的影响。结果表明,多次循环碳酸化/煅烧捕集CO2后CaO仍具有较高H2S吸收性能。前20次循环,CaO硫化转化率随循环次数增加迅速降低;20次循环后,CaO硫化转化率缓慢下降。硫化120min后,未循环CaO的硫化转化率接近100%,而经历1、20和100次循环后CaO的硫化转化率分别为94%、81%和74%。H2S浓度对循环CaO硫化性能影响较大。硫化温度(800~1000℃)对循环CaO的硫化性能影响较小,最佳硫化温度为900℃。随循环次数增加,CaO颗粒发生高温烧结,导致比表面积降低和20~150nm内孔隙减少,而这是与H2S吸收密切相关的孔隙,导致CaO硫化转化率降低。

References

[1]  Blamey J, Anthony E J, Wang J, Fennell P S.The calcium looping cycle for large-scale CO2 capture [J]. Prog. Energ. Combust., 2010, 36 (2): 260-279
[2]  Chen Huichao (陈惠超), Zhao Changsui (赵长遂), Shen Peng (沈鹏). Effect of steam in flue gas on CO2 capture for calcium based sorbent [J]. CIESC Journal (化工学报), 2013, 64 (4): 1364-1372
[3]  Wu Qilong (吴琪珑), Zheng Ying (郑瑛), Luo Cong (罗聪), Ding Ning (丁宁), Bian Guan (边关), Zheng Chuguang (郑楚光). Reactivity and microstructure of synthetic CaO-based sorbents for CO2 capture [J]. CIESC Journal (化工学报), 2011, 62 (10): 2905-2913
[4]  Wang B W, Song X Y, Wang Z H, Zheng C G. Preparation and application of the sol-gel combustion synthesis-made CaO/CaZrO3 sorbent for cyclic CO2 capture through the severe calcination condition [J]. Chin. J. Chem. Eng., 2014, 22 (9): 991-999
[5]  Dean C C, Blamey J, Florin N H, Al-Jeboori M J, Fennell P S. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydogen production [J]. Chem. Eng. Res. Des., 2011, 89 (6): 836-855
[6]  Rozada B A. Post-combustion CO2 capture by Ca-looping in a 1.7 MWth pilot plant: current status and future developments//4th Intern. Workshop on Oxy-fuel FBC Technol.[C]. Nanjing, China: Southeast University, 2014
[7]  Luk H T, Lei H M, Ng W Y, Ju Y H, Lam K F. Techno-economic analysis of distributed hydrogen production from natural gas [J]. Chin. J. Chem. Eng., 2012, 20 (3): 489-496
[8]  Qiao Chunzhen (乔春珍), Xiao Yunhan (肖云汉), Yuan Kun (原鲲), Wang Feng (王峰). Impact of operation parameters on performance of “direct-coal-to-hydrogen” process [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2004, 55 (S1): 34-38
[9]  Lin S Y, Suzuki Y, Hatano H, Harada M. Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-RING method) [J]. Energy & Fuels, 2001, 15 (2): 339-343
[10]  Lin S Y, Suzuki Y, Hatano H, Harada M. Developing an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons [J]. Energ. Convers. Manage., 2002, 43 (9): 1283-1290
[11]  Ziock H J, Lackner K S, Harrison D P. Zero emission coal power, a new concept [R/OL]. Los Alamos Report. LA-UR-01-2214. 2001. http://www.zeca.org/
[12]  S?owiński G. Some technical issues of zero-emission coal technology [J]. Int. J. Hydrogen Energ., 2006, 31 (8): 1091-1102
[13]  Shen Xun (沈洵). A new near zero emission coal utilization technology with combined gasification and combustion [D]. Hangzhou: Zhejiang University, 2004
[14]  Goldberg P, Chen Z Y, Connor W, Ziock H. CO2 mineral sequestration studies in US//Proc. of 1st National Conference on Carbon Sequestration [C]. Washington D C, USA, 2001
[15]  Sun P, Grace J R, Lim C J, Anthony E J. The effect of CaO sintering on cyclic CO2 capture in energy systems [J]. AIChE J., 2007, 53 (9): 2432-2442
[16]  Qiao Chunzhen (乔春珍), Wang Baoli (王宝利), Xiao Yunhan (肖云汉). Activity decline of Ca-based CO2 absorbent in repetitive calcination-carbonation [J]. CIESC Journal (化工学报), 2010, 61 (3): 720-724
[17]  Grasa G S, Abanades J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles [J]. Ind. Eng. Chem. Res., 2006, 45 (26): 8846-8851
[18]  Li Yingjie (李英杰), Sun Rongyue (孙荣岳), Liu Hongling (刘红玲), Zhao Jianli (赵建立), Han Kuihua (韩奎华), Lu Chunmei (路春美). Process analysis of cyclic CO2 capture using limestone and dolomite at high temperature [J]. CIESC Journal (化工学报), 2011, 62 (6): 1693-1700
[19]  Perdikaris N, Panopoulos K D, Fryda L, Kakaras E. Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC [J]. Fuel, 2009, 88 (8): 1365-1375
[20]  Fenouil L A, Lynn S. Study of calcium-based sorbents for high-temperature H2S removal (2): Kinetics of H2S sorption by calcined limestone [J]. Ind. Eng. Chem. Res., 1995, 34 (7): 2334-2342
[21]  Adánez J, de Diego L F, García-Labiano F, Abad A. Kinetics of H2S reaction with calcined calcium-based sorbents [J]. Energy & Fuels, 1998, 12 (3): 617-625
[22]  García-Labiano F, Adánez J, Abad A, de Diego L F, Gayán P. Effect of pressure on the sulfidation of calcined calcium-based sorbents [J]. Energy & Fuels, 2004, 18 (3): 761-769
[23]  Adánez J, García-Labiano F, de Diego L F, Fierro V. H2S removal in entrained flow reactors by injection of Ca-based sorbents at high temperatures [J]. Energy & Fuels, 1998, 12 (4): 726-733
[24]  García-Labiano F, de Diego L F, Adánez J. Effectiveness of natural, commercial, and modified calcium-based sorbents as H2S removal agents at high temperatures [J]. Environ. Sci. Technol., 1999, 33 (2): 288-293
[25]  Zhao Fengyun (赵风云), Zhao Hua (赵华), Zhao Ruihong (赵瑞红), Liu Runjing (刘润静), Hu Yongqi (胡永琪). Kinetics on removal of H2S and COS with CaCO3 and CaO [J]. Chemical Engineering (化学工程), 2006, 34 (12): 31-35
[26]  Lin S Y, Al-Shawabkeh A, Matsuda H, Hasatani M, Horio M. H2S reactions with limestone and calcined limestone [J]. J. Chem. Eng. Jpn., 1995, 28 (6): 708-714
[27]  Sun P, Grace J R, Lim C J, Anthony E J. Co-capture of H2S and CO2 in a pressurized-gasifier-based process [J]. Energy & Fuels, 2007, 21 (2): 836-844
[28]  Liu Yang (刘洋), Li Zhenshan (李振山), Cai Ningsheng (蔡宁生). Effect of H2S on the CO2 capture capacity of limestone in calcination/carbonation cycles [J]. Journal of Tsinghua University: Science and Technology (清华大学学报: 自然科学版), 2013, 53 (3): 342-347
[29]  Li Yingjie, Zhao Changsui, Chen Huichao. Fractal characteristics of CaO as CO2 carrier during cyclic calcination/carbonation reactions [J]. CIESC Journal (化工学报), 2009, 60 (9):2284-2291
[30]  Sun R Y, Li Y J, Liu H L, Wu S M, Lu C M. CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle [J]. Appl. Energ., 2012, 89 (1): 368-373
[31]  Borgwardt R H, Roache N F, Bruce K R. Surface area of calcium oxide and kinetics of calcium sulfide formation [J]. Environ. Prog., 1984, 3 (2): 129-135

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133