全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于稀疏性非负矩阵分解的故障监测方法

DOI: 10.11949/j.issn.0438-1157.20141660, PP. 1798-1805

Keywords: 故障监测,非负矩阵分解,主元分析,稀疏编码,统计过程监控

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了基于稀疏性非负矩阵分解(SNMF)的故障监测方法。非负矩阵分解(NMF)是一种新的降维方法,可以得到原始数据的低秩近似矩阵。与传统的多元统计过程监控方法如主成分分析(PCA)相比,NMF对潜变量的性质没有假设,除了非负性的要求。将稀疏编码和非负矩阵分解方法结合在一起,因为施加了稀疏性的约束,稀疏性非负矩阵分解方法可以得到对数据更稀疏的表示。在分解时对低秩近似矩阵进行正交化处理,从而在降维时除去变量中的冗余信息,将信息集中到更少的投影方向上。然后,用SNMF方法来提取过程的潜变量,并定义新的监测指标来进行故障监测。使用核密度估计(KDE)方法来计算新定义的监测指标的控制上限。最后,将提出的基于SNMF的监测方法应用于TE过程来评估其监测性能,并与基于传统NMF和PCA的方法进行比较。仿真实验结果表明了所提出新方法的可行性。

References

[1]  Xia Luyue (夏陆岳), Pan Haitian (潘海天), Zhou Mengfei (周猛飞), Cai Yijun (蔡亦军), Sun Xiaofang (孙小方). Process monitoring and fault diagnosis of propylene polymerization based on improved multiscale principle component analysis [J]. CIESC Journal (化工学报), 2011, 62 (8): 2312-2317
[2]  Li Xiangbao, Yang Yupu, Zhang Weidong. Statistical process monitoring via generalized non-negative matrix projection [J]. Chemometrics and Intelligent Laboratory Systems, 2013, 121: 15-25
[3]  Ge Zhiqiang, Song Zhihuan. Distributed PCA model for plant-wide process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52: 1947-1957
[4]  Ge Zhiqiang, Song Zhihuan. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE Journal, 2010, 56: 2838-2849
[5]  Jia Mingxing, Xu Hengyuan, Liu Xiaofei, Wang Ning. The optimization of the kind and parameters of kernel function in KPCA for process monitoring [J]. Computers and Chemical Engineering, 2012, 46: 94-104
[6]  Ge Zhiqiang (葛志强), Song Zhihuan (宋执环). New online monitoring method for multiple operating modes process [J]. Journal of Chemical Industry and Engineering(China) (化工学报), 2008, 59 (1): 135-141
[7]  Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization [J]. Nature, 1999, 401: 788-791
[8]  Shang Fanhua, Jiao L C, Wang Fei. Graph dual regularization non-negative matrix factorization for co-clustering [J]. Pattern Recognition, 2012, 45: 2237-2250
[9]  Zeng Kun, Yu Jun, Li Cuihua, You Jane, Jin Taisong. Image clustering by hyper-graph regularized non-negative matrix factorization [J]. Neurocomputing, 2014, 138: 209-217
[10]  Lee D D, Seung H S. Algorithms for non-negative matrix factorization//Advance of Neural Information Process System[C]. MIT Press, Cambridge, MA, USA, 2001
[11]  Li Xiangbao, Yang Yupu, Zhang Weidong. Fault detection method for non-Gaussian processes based on non-negative matrix factorization [J]. Asia-Pac. J. Chem. Eng, 2013, 8: 362-370
[12]  Liu Weixiang, Zheng Nanning, Lu Xiaofeng. Non-negative matrix factorization for visual coding//Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. 2003, 3: 293-296
[13]  Gonzalez E, Zhang Y. Accelerating the Lee-Seung algorithm for nonnegative matrix factorization[R]. Technical Report TR-05-02, Rice University, 2005
[14]  Hoyer P. Non-negative matrix factorization with sparseness constraints [J]. Journal of Machine Learning Research, 2004, 5: 1457-1469
[15]  Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381: 607-609
[16]  Albright R, Cox J, Duling D, Langville A N, Meyer C D. Algorithms, initializations, and convergence for the nonnegative matrix factorization[R]. NCSU Technical Report Math 81706, North Caroline State University, 2006
[17]  Chen Q, Wynne R J, Goulding P, Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring [J]. Control Engineering Practice, 2000, 8: 531-543
[18]  Botev Z I, Kroese D P. The generalized cross entropy method, with applications to probability density estimation [J]. Methodology and Computing in Applied Probability, 2011, 13: 1-27
[19]  Downs J J, Vogel E. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering, 1993, 17: 245-255
[20]  Yu Jianbo. Local and global principal component analysis for process monitoring [J]. Journal of Process Control, 2012, 22: 1358-1373

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133