全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于逾渗理论的多孔过滤介质孔径分布估计方法

DOI: 10.11949/j.issn.0438-1157.20141546, PP. 1690-1696

Keywords: 过滤,多孔介质,模型,逾渗理论,孔径分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合逾渗理论和网格模型,建立了过滤系数与过滤介质孔径分布的联系方程。利用此方程结合过滤实验数据获得过滤介质孔径分布的统计参数,同时与其他方法获得孔径分布参数以及其他文献中的数据进行比较,并利用计算机模拟过滤过程验证了获得的孔径分布参数,结果表明基于逾渗理论的过滤模型用于孔径分布参数的估计是比较准确和有效的。

References

[1]  Xu S, Gao B, Saiers J E. Straining of colloidal particles in saturated porous media [J]. Water Resources Research, 2006, 42 (12): W12S-W16S
[2]  Rege S D, Fogler H S. Network model for straining dominated particle entrapment in porous media [J]. Chemical Engineering Science, 1987, 42 (7): 1553-1564
[3]  Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1999: 532
[4]  Langlois S, Coeuret F. Flow-through and flow-by porous electrodes of nickel foam (Ⅰ): Material characterization [J]. Journal of Applied Electrochemistry, 1989, 19 (1): 43-50
[5]  Hoefner M L, Fogler H S. Pore evolution and channel formation during flow and reaction in porous media [J]. AIChE Journal, 1988, 34 (1): 45-54
[6]  Liu Peisheng (刘培生). Determining methods for aperture and aperture distribution of porous materials [J]. Titanium Industry Progress (钛工业进展), 2006, 23 (2): 29-34
[7]  Chalk P, Gooding N, Hutten S, You Z, Bedrikovetsky P. Pore size distribution from challenge coreflood testing by colloidal flow [J]. Chemical Engineering Research and Design, 2012, 90 (1): 63-77
[8]  Banhart J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Progress in Materials Science, 2001, 46 (6): 559-632
[9]  Fan Yunge (范云鸽), Li Yanhong (李燕鸿), Ma Jianbiao (马建标). Characterization of the nanoscaled pores in porous polydivinylbenzen adsorbents [J]. Acta Polymerica Sinica (高分子学报), 2002 (2): 173-179
[10]  Yuan H, Shapiro A A. A mathematical model for non-monotonic deposition profiles in deep bed filtration systems [J]. Chemical Engineering Journal, 2011, 166: 105-115
[11]  Santos A, Bedrikovetsky P. A stochastic model for particulate suspension flow in porous media [J]. Transport in Porous Media, 2006, 62 (1): 23-53
[12]  Shapiro A A, Bedrikovetsky P G, Santos A, Medvedev O O. A stochastic model for filtration of particulate suspensions with incomplete pore plugging [J]. Transport in Porous Media, 2007, 67 (1): 135-164
[13]  Perrier E M A, Bird N R A, Rieutord T B. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes [J]. Biogeosciences, 2010, 7 (10): 3177-3186
[14]  Berkowitz B, Ewing R P. Percolation theory and network modeling applications in soil physics [J]. Surveys in Geophysics, 1998, 19 (1): 23-72
[15]  Selyakov V I, Kadet V. Percolation Models for Transport in Porous Media: with Applications to Reservoir Engineering [M]. Springer, 1997
[16]  Larson R G, Davis H T. Conducting backbone in percolating Bethe lattices [J]. Journal of Physics C: Solid State Physics, 1982, 15 (11): 2327-2331
[17]  Santos A, Barros I P H. Multiple particle retention mechanisms during filtration in porous media [J]. Environmental Science & Technology, 2010, 44 (7): 2515-2521
[18]  Sharma M M, Yortsos Y C. A network model for deep bed filtration processes [J]. AIChE Journal, 1987, 33 (10): 1644-1653
[19]  Tang G H, Ye P X, Tao W Q. Pressure-driven and electroosmotic non-Newtonian flows through microporous media via lattice Boltzmann method [J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165 (21/22): 1536-1542
[20]  Shapiro A A, Wesselingh J A. Gas transport in tight porous media: gas kinetic approach [J]. Chemical Engineering Journal, 2008, 142 (1): 14-22
[21]  Zhu Weibing (朱卫兵), Wang Meng (王猛), Chen Hong (陈宏), Han Ding (韩丁), Liu Jianwen (刘建文). Lattice Boltzmann simulations for fluid flow through porous media [J]. CIESC Journal (化工学报), 2013, 64 (S1): 33
[22]  Sun Meiyu (孙梅玉), Ji Zhongli (姬忠礼). Parallel computing of gas flow through ceramic filter by using lattice Boltzmann method [J]. CIESC Journal (化工学报), 2010, 61 (6): 1423
[23]  You Z, Badalyan A, Bedrikovetsky P. Size-exclusion colloidal transport in porous media—stochastic modeling and experimental study [J]. SPE Journal, 2013 (8): 620-633
[24]  Berkowitz B, Balberg I. Percolation approach to the problem of hydraulic conductivity in porous media [J]. Transport in Porous Media, 1992, 9 (3): 275-286
[25]  Yuan H, Shapiro A, You Z, Badalyan A. Estimating filtration coefficients for straining from percolation and random walk theories [J]. Chemical Engineering Journal, 2012, 210: 63-73
[26]  Jia X, Gregory J, Williams R. Particle Deposition & Aggregation: Measurement, Modelling and Simulation [M]. Elsevier Science, 1998
[27]  Ding B, Li C, Zhang M, Ji F, Dong X. Effects of pore size distribution and coordination number on the prediction of filtration coefficients for straining from percolation theory [J]. Chemical Engineering Science, 2015, 127: 40-51
[28]  Reyes S, Jensen K F. Estimation of effective transport coefficients in porous solids based on percolation concepts [J]. Chemical Engineering Science, 1985, 40 (9): 1723-1734

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133