全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

连续快速合成核壳型纳米复合粒子

DOI: 10.11949/j.issn.0438-1157.20150027, PP. 2343-2350

Keywords: 反应工程,混合,纳米材料,超重力,撞击流,膜包覆

Full-Text   Cite this paper   Add to My Lib

Abstract:

一种基于二次旋转的高频撞击流反应器实现了连续快速制备核壳型纳米复合粒子的工艺过程。该反应器将均相成核与异相成核过程耦合在一起,并显著强化了液液多尺度混合过程。通过制备Fe3O4/MnOOH纳米复合粒子,初步探究了包覆率、主流量、支流总量和撞击点位置对包覆过程宏观与本征动力学过程的影响。发现了反应器存在的一些不足之处及改进方法。反应器经不断改进,有望实现大规模、低成本、高质量生产各种纳米复合粒子的工艺过程。

References

[1]  Li Y T, Liu J, Zhong Y J, Zhang J, Wang Z Y, Wang L, An Y L, Lin M, Gao Z Q, Zhang D S. Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo [J]. Int. J. Nanomedicine, 2011, 6: 2805-2819.
[2]  Patrick W, Dietmar S. Photodegradation of Rhodamine B solution via SiO2@TiO2 nano-spheres [J]. J. Photoch. Photobio. A Chem.,2007, 185: 19-25.
[3]  Chen N, Mu G H, Pan X F, Gan K, Gu M. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders [J]. Mat. Sci. Eng. B-Solid, 2007, 139: 256-260.
[4]  Srinivas A, Gopalan R, Chandrasekharan V. Room temperature multiferroism and magnetoelectric coupling in BaTiO3-BaFe12O19 system [J]. Solid State Commun., 2009, 149: 9-10.
[5]  Alexandre R L, Ceco D D, Karolina I P, Andrey V K, Miroslav V A, Eiki A. Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles [J]. Colloid. Surf. A-Physicochem. Eng. Asp., 2004, 245: 9-14.
[6]  Arnout I. Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells [J]. Langmuir, 2001, 17 (12): 3579-3585.
[7]  Dresco P A, Zaitsev V S, Gambino R J, Chu B. Preparation and properties of magnetite and polymer magnetite nanoparticles [J]. Langmuir, 1999, 15(6): 1945-1951.
[8]  Hota G, Idage S B, Khilar K C. Characterization of CdSAg2S nanoparticles using XPS technique [J]. Colloid. Surf. A-Physicochem. Eng. Asp., 2007, 293: 5-12.
[9]  Song C Y, Yu W J, Zhao B, Zhang H L, Tang C J, Sun K Q, Wu X C, Dong L, Chen Y. Efficient fabrication and photocatalytic properties of TiO2 hollow spheres [J]. Catal. Commun., 2009, 10 (5): 650-654.
[10]  Shenoy D B, Antipov A A, Sukhorukov G B, Mhwald H. Layer-by-layer engineering of biocompatible, decomposable core-shell structures [J]. Biomacromolecules, 2003, 4 (2): 265-272.
[11]  Rajib G C, Santanu P. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications [J]. Chem. Rev., 2012, 112: 2373-2433.
[12]  Ge Wei (葛蔚), Liu Xinhua (刘新华), Ren Ying (任瑛), Xu Ji (徐骥), Li Jinghai (李静海). From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering [J]. CIESC Journal(化工学报), 2010, 61(7): 1614-1620.
[13]  Yang Ning (杨宁), Li Jinghai (李静海). Mesoscience in chemical engineering and virtual process engineering: analysis and perspective [J]. CIESC Journal (化工学报), 2014, 65(7): 2403-2409.
[14]  Demyanovich R J. Liquid mixing employing expanding, thinning liquid sheets[P]: US, 4735359.1988.
[15]  Robert J D, John R B. Rapid micromixing by the impingement of thin liquid sheets [J]. Ind. Eng. Chem. Res., 1989, 28: 825-839.
[16]  Ravi, Kumar D V, Prasad B L V, Kulkarni A A. Impinging jet micromixer for flow synthesis of nanocrystalline MgO: role of mixing/impingement zone [J]. Ind. Eng. Chem. Res., 2013, 52: 17376-17382.
[17]  Ramshaw C. Higee distillation––an example of process intensification [J]. Chem. Eng., 1983, 13: 389-399.
[18]  Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application [J]. Chem. Eng. J., 2010, 156: 588-593.
[19]  Guo F, Zheng C, Guo K, Feng Y D, Nelson C G. Hydrodynamics and mass transfer in cross-flow rotating packed bed [J]. Chem. Eng. Sci., 1997, 52: 3853-3859.
[20]  Guo Kai(郭锴). A study of liquid flowing inside the higee rotor[D]. Beijing:Beijing University of Chemical Technology, 1996.
[21]  Horlock J H, Lakshminarayana B. Secondary flows: theory, experiment, and application in turbomachinery aerodynamics [J]. Ann. Rev. Fluid. Mech., 1973, 5: 247-280.
[22]  Briley W R, Medonald H. Three-dimensional viscous flows with large secondary velocity [J]. J. Fluid Mech., 1984, 144: 47-77.
[23]  Chitrackar R, Kanoh H, Miyai Y, Ooi K. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6 Mn1.6O4 [J]. Ind. Eng. Chem. Res., 2001, 40: 2054-2058.
[24]  Zhang Q H, Sun S Y, Li S P, Jiang H, Yu J G. Adsorption of lithium ions on novel nanocrystal MnO2 [J]. Chem. Eng. Sci., 2007, 62: 4869-4874.
[25]  Kang S C, Jae C L, Eun J K, Kyung C L, Yang S K, Kenta O. Recovery of lithium from seawater using nano-manganese oxide adsorbents prepared by gel process [J]. Mater. Sci. Forum., 2004, 449-452: 277-280.
[26]  Zhan Hanhui(湛含辉), Cheng Hao(成浩), Liu Jianwen(刘建文), Zhan Xuehui(湛雪辉). Principles of Secondary Flow(二次流原理)[M]. Changsha: Central South University Press, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133