全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于改进核主成分分析的故障检测与诊断方法

DOI: 10.11949/j.issn.0438-1157.20141378, PP. 2139-2149

Keywords: 改进核主成分分析,流形学习,费舍尔判别分析,故障检测,诊断,仿真实验

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统基于核主成分分析的故障检测方法提取非线性特征时只考虑全局结构而忽略局部近邻结构保持的问题,提出基于改进核主成分分析的故障检测与诊断方法。改进核主成分分析方法将流形学习保持局部结构的思想融入核主成分分析的目标函数中,使得到的特征空间不仅具有原始样本空间的整体结构,还保持样本空间相似的局部近邻结构,可以包含更丰富的特征信息。在此基础上,本文使用改进核主成分分析方法把原始变量空间映射到特征空间,使用费舍尔判别分析在特征空间中构建距离统计量并通过核密度估计确定其控制限,进一步利用相似度的性能诊断方法识别发生的故障类型。采用TennesseeEastman过程故障检测数据集进行的仿真实验表明所提方法可以取得较好的效果。

References

[1]  Zhou Donghua (周东华), Li Gang (李钢), Li Yuan (李元). Data Driven Industrial Process Fault Diagnosis Technology Based on Principal Component Analysis and Partial Least Squares (数据驱动的工业过程故障诊断技术: 基于主成分分析与偏最小二乘的方法) [M]. Beijing: Science Press, 2011:1-9.
[2]  Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of Process Control, 2012, 22 (9): 1567-1581.
[3]  Alcala C F, Joe Qin S. Analysis and generalization of fault diagnosis methods for process monitoring [J]. Journal of Process Control, 2011, 21 (3): 322-330.
[4]  Zhang M, Ge Z, Song Z, et al. Global-local structure analysis model and its application for fault detection and identification [J]. Industrial & Engineering Chemistry Research, 2011, 50 (11): 6837-6848.
[5]  Ma Yuxin (马玉鑫), Wang Mengling (王梦灵), Shi Hongbo (侍洪波). Faule detection for chemical process based on locally linear embedding [J]. CIESC Journal (化工学报), 2012, 63 (7): 2121-2127.
[6]  Wong W K, Zhao H T. Supervised optimal locality multi-manifold projection algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 20-28.
[7]  Deng X, Tian X. Sparse kernel locality preserving projection and its application in nonlinear process fault detection [J]. Chinese Journal of Chemical Engineering, 2013, 21 (2): 163-170.
[8]  Yu J. Local and global principal component analysis for process monitoring [J]. Journal of Process Control, 2012, 22 (7): 1358-1373.
[9]  Luo L, Bao S, Gao Z, et al. Batch process monitoring with tensor global–local structure analysis [J]. Industrial & Engineering Chemistry Research, 2013, 52 (50): 18031-18042.
[10]  Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring [J]. Automatica, 2009, 45 (7): 1593-1600.
[11]  He Q P, Qin S J, Wang J. A new fault diagnosis method using fault directions in fisher discriminant analysis [J]. AIChE Journal, 2005, 51 (2): 555-571.
[12]  Zhang X, Ma S, Yan W W, et al. A novel systematic method of quality monitoring and prediction based on FDA and kernel regression [J]. Chinese Journal of Chemical Engineering, 2009, 17 (3): 427-436.
[13]  Fan J, Qin S J, Wang Y. Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA [J]. Control Engineering Practice, 2014, 22: 205-216.
[14]  Martin E B, Morris A J. Non-parametric confidence bounds for process performance monitoring charts [J]. Journal of Process Control, 1996, 6 (6): 349-358.
[15]  Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis [J]. Journal of Process Control, 2012, 22 (3): 551-563.
[16]  Xu Yuan (徐圆), Liu Ying (刘莹), Zhu Qunxiong (朱群雄). A complex process fault prognosis approach based on multivariate delayed sequences [J]. CIESC Journal (化工学报), 2013, 64 (12): 4290-4295.
[17]  Han Min (韩敏), Wang Yanan (王亚楠). Prediction of multivariate time series based on reservoir principal component analysis [J]. Control and Decision (控制与决策), 2009, 24 (10): 1526-1530.
[18]  Lei Meng (雷萌), Li Ming (李明). NIRS prediction model of calorific value of coal with KPCA feature extract [J]. CIESC Journal (化工学报), 2012, 64 (12): 3991-3995.
[19]  Song Bing (宋冰), Ma Yuxin (马玉鑫), Fang Yongfeng (方永锋), et al. Fault detection for chemical process based on LSNPE method [J]. CIESC Journal (化工学报), 2014, 65 (2): 620-627.
[20]  Tong C, Yan X. Statistical process monitoring based on a multi-manifold projection algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 20-28.
[21]  Zhang Ni (张妮), Tian Xuemin (田学民), Cai Lianfang (蔡连芳). Nonlinear process fault detection method based on RISOMAP [J]. CIESC Journal (化工学报), 2013, 64 (6): 2125-2130.
[22]  Sprekeler H. On the relation of slow feature analysis and laplacian eigenmaps [J]. Neural Computation, 2011, 23 (12): 3287-3302.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133