全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

汞在MnOx-CeO2/γ-Al2O3催化剂表面的赋存形态分析

DOI: 10.11949/j.issn.0438-1157.20141887, PP. 2082-2088

Keywords: ,污染,催化剂,选择催化还原,汞形态分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了高效经济地控制燃煤电站汞的排放,探索新型SCR催化剂上汞的催化氧化具有重要的学术价值和广阔的应用前景。Hg0在MnOx-CeO2/γ-Al2O3(MnCe15)催化剂上被氧化后会以多种形态存在于催化剂表面,为确定MnCe15催化剂上汞的化合物的赋存形态,使用程序升温热分解方法研究了纯汞化合物的分解曲线,并与在不同烟气条件下处理过的MnCe15催化剂的分解脱附曲线进行了对比。研究确认了反应中HgO、HgCl2、Hg(NO3)2和HgSO4的生成,并根据实验结果分析了相应的汞化合物生成的反应路径。结果表明,在模拟烟气条件下HgCl2是主要的异相催化反应产物,同时可以在催化剂表面检测到少量HgO和HgSO4的生成。这一结论可为研究SCR催化剂上Hg0的催化氧化机理提供基础。

References

[1]  Windm?ller C C, Wilken R D, Jardim W D F. Mercury speciation in contaminated soils by thermal release analysis [J]. Water, Air, and Soil Pollution, 1996, 89 (3/4): 399-416.
[2]  Zhang Anchao (张安超), Xiang Jun (向军), Sun Lushi (孙路石), Hu Song (胡松), Fu Peng (付鹏), Cheng Wei (程伟), Qiu Jianrong (邱建荣). Synthesis and characterization of novel modified sorbents and their performance for elemental mercury removal [J]. CIESC Journal (化工学报), 2009, 60 (6): 1546-1553.
[3]  Wang P, Su S, Xiang J, You H, Cao F, Sun L, Hu S, Zhang Y. Catalytic oxidation of Hg0 by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures [J]. Chemosphere, 2014, 101: 49-54.
[4]  He S, Zhou J, Zhu Y, Luo Z, Ni M, Cen K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst [J]. Energy & Fuels, 2008, 23 (1): 253-259.
[5]  Eom Y, Jeon S, Ngo T, Kim J, Lee T. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst [J]. Catalysis Letters, 2008, 121 (3/4): 219-225.
[6]  Biester H, Scholz C. Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions [J]. Environmental Science & Technology, 1996, 31 (1): 233-239.
[7]  Feng X, Lu J, Grègoire D, Hao Y, Banic C, Schroeder W. Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: method development. [J]. Analytical & Bioanalytical Chemistry, 2004, 380 (4): 683-689.
[8]  Bradshaw P, Koksoy M, Turkey W, Proceedings of the 23rd International Geology Congress [C]. Academia, Prague, Section 7, 1968: 341-355
[9]  Biester H, Gosar M, Covelli S. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia [J]. Environmental Science & Technology, 2000, 34 (16): 3330-3336.
[10]  Raposo C, Windm?ller C C, Dur?oJúnior W A. Mercury speciation in fluorescent lamps by thermal release analysis [J]. Waste Management, 2003, 23 (10): 879-886.
[11]  Ozaki M, Uddin M A, Sasaoka E, Wu S. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas [J]. Fuel, 2008, 87 (17/18): 3610-3615.
[12]  Uddin M A, Ozaki M, Sasaoka E, Wu S. Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas [J]. Energy & Fuels, 2009, 23 (10): 4710-4716.
[13]  Murakami A, Uddin M A, Ochiai R, Sasaoka E, Wu S. Study of the mercury sorption mechanism on activated carbon in coal combustion flue gas by the temperature-programmed decomposition desorption technique [J]. Energy & Fuels,2010, 24 (8): 4241-4249.
[14]  Wu S, Uddin M A, Nagano S, Ozaki M, Sasaoka E. Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry [J]. Energy & Fuels, 2010, 25 (1): 144-153.
[15]  Rallo M, Lopez-Anton M A, Perry R, Maroto-Valer M M. Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition [J]. Fuel, 2010, 89 (8): 2157-2159.
[16]  Lopez-Anton M A, Yuan Y, Perry R, Maroto-Valer M M. Analysis of mercury species present during coal combustion by thermal desorption [J]. Fuel,2010, 89 (3): 629-634.
[17]  Rallo M, Lopez-Anton M A, Meij R, Perry R, Maroto-Valer M M. Study of mercury in by-products from a Dutch co-combustion power station [J]. Journal of Hazardous Materials, 2010, 174 (1/2/3): 28-33.
[18]  Lopez-Anton M A, Perry R, Abad-Valle P, Díaz-Somoano M, Martínez-Tarazona M R, Maroto-Valer M M. Speciation of mercury in fly ashes by temperature programmed decomposition [J]. Fuel Processing Technology, 2011, 92 (3): 707-711.
[19]  Abad-Valle P, Lopez-Anton M A, Diaz-Somoano M, Martinez-Tarazona M R. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury [J]. Chemical Engineering Journal, 2011, 174 (1): 86-92.
[20]  Rallo M, Heidel B, Brechtel K, Maroto-Valer M M. Effect of SCR operation variables on mercury speciation [J]. Chemical Engineering Journal, 2012, 198/199: 87-94.
[21]  Rumayor M, Diaz-Somoano M, Lopez-Anton M A, Martinez-Tarazona M R. Mercury compounds characterization by thermal desorption [J]. Talanta,2013, 114: 318-322.
[22]  Presto A A, Granite E J. Survey of catalysts for oxidation of mercury in flue gas [J]. Environmental Science & Technology, 2006, 40 (18): 5601-5609.
[23]  Niksa S, Fujiwara N. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas [J]. Journal of the Air & Waste Management Association:Air & Waste Management Association, 2005, 55 (12): 1866-1875.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133