全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于DEM模拟气固鼓泡床中颗粒碰撞参数对流场间歇性的影响

DOI: 10.11949/j.issn.0438-1157.20141780, PP. 2041-2048

Keywords: 流化床,多相流,计算流体力学,颗粒弹性系数,颗粒恢复系数,间歇性

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用计算流体力学和离散元(CFD-DEM)方法研究鼓泡床内的气固流动状态,考察了颗粒弹性系数和恢复系数对流场间歇性的影响,并利用小波变化分析方法分析了颗粒弹性系数和恢复系数对流场相干结构的影响。研究结果表明:颗粒弹性系数和恢复系数对颗粒速度脉动能、床层平均高度、平坦因子以及流场间歇性有一定影响。随着颗粒弹性系数取值的变大,高频区能量和平坦因子先降低后增加,床层高度先增加后降低,流场间歇性先减弱后增强;颗粒恢复系数取值越大,高频区能量和平坦因子越低,床层高度越大,流场间歇性越弱。

References

[1]  Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989, 11 (7): 674-693.
[2]  Giri B K, Mitra C, Panigrahi P K, et al. Multi-scale dynamics of glow discharge plasma through wavelets: self-similar behavior to neutral turbulence and dissipation [OL]. [2014-01-13]. http://arxiv.org/abs/ 1401.2742.
[3]  Zhang Ke (张科). CFD-DEM simulation of complex dense gas-solid flow [D]. Hangzhou: Zhejiang University, 2012.
[4]  Tian F G,Zhang M C,Fan H J,et al. Numerical study on microscopic mixing characteristics in fluidized beds via DEM [J]. Fuel Process Technology, 2007, 88 (2): 187-198.
[5]  Tamburini A, Cipollina A, Micale G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of solid particle distribution [J]. Chemical Engineering Journal, 2013, 223: 875-890.
[6]  Jiang Nan (姜楠), Tian Yan (田砚). Wavelet analysis of detecting multi-scale coherent structures and intermittency in wall turbulence [J]. Journal of Harbin Engineering University (哈尔滨工程大学学报), 2005, 26 (1): 7-12.
[7]  Liu Haifeng (刘海峰), Wu Tao (吴韬), Wang Fuchen (王辅臣), Gong Xin (龚欣), Yu Zunhong (于遵宏). Coherent structure of turbulence based on wavelet analysis (Ⅰ): Determining coherent structure with energy maxima criterion [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2000, 51 (6): 761-765.
[8]  Liu Haifeng (刘海峰), Zhao Tiejun (赵铁钧), Wang Fuchen (王辅臣), Gong Xin (龚欣), Yu Zunhong (于遵宏). Coherent structure of turbulence based on wavelet analysis (Ⅱ) :Wave shape and local singularity of coherent structure [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2000, 51 (6): 766-770.
[9]  Onorato M, Camussi R, Iuso G. Small scale intermittency and bursting in a turbulent channel flow [J]. Physical Review E, 2000, 61 (2): 1447.
[10]  Zhang Bin (张斌), Wang Tong (王彤), Gu Chuangang (谷传纲), Dai Zhengyuan (戴正元). Identification of turbulent coherent structures based on wavelet and bi-spectrum analysis [J]. Transactions of the Chinese Society for Agricultural Machinery (农业机械学报), 2009, 40 (11): 203-207.
[11]  Oberleithner K, Sieber M, Nayeri C N, et al. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction [J]. Journal of Fluid Mechanics, 2011, 679 (1): 383-414.
[12]  Jin Yong (金涌), Zhu Jingxu (祝京旭), Yu Zhiqing (俞芷青). Fluidization Engineering Principles (流态化工程原理) [M]. Beijing: Tsinghua University Press, 2001: 72-75.
[13]  Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Otechnique, 1997, 29 (1): 331-336.
[14]  Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings [J]. Chemical Engineering Science, 2008, 63 (23): 5728-5770.
[15]  Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization [J]. International Journal of Multiphase Flow, 1996, 22: 21-66.
[16]  Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed [J]. Powder Technology, 1993, 77 (1): 79-87.
[17]  Kawaguchi T, Tanaka T, Tsuji Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models) [J]. Powder Technology, 1998, 96 (2): 129-138.
[18]  Feng Y Q, Yu A B. Assessment of model formulations in the discrete particle simulation of gas-solid flow [J]. Industrial & Engineering Chemistry Research, 2004, 43 (26): 8378-8390.
[19]  Pandit J K, Wang X S, Rhodes M J. Study of Geldart's Group A behaviour using the discrete element method simulation [J]. Powder Technology, 2005, 160 (1): 7-14.
[20]  Sun J, Wang J, Yang Y. CFD simulation and wavelet transform analysis of vortex and coherent structure in a gas-solid fluidized bed [J]. Chemical Engineering Science, 2012, 71 (26): 507-519.
[21]  Sun J, Wang J, Yang Y. CFD investigation of particle fluctuation characteristics of bidisperse mixture in a gas-solid fluidized bed [J]. Chemical Engineering Science, 2012, 82 (12): 285-298.
[22]  Jiradilok V, Gidaspow D, Breault R W. Computation of gas and solid dispersion coefficients in turbulent risers and bubbling beds [J]. Chemical Engineering Science, 2007, 62 (13): 3397-3409.
[23]  Fang Mingming (房明明), Luo Kun (罗坤), Yang Shiliang (杨世亮), Zhang Ke (张科), Fan Jianren (樊建人). CFD-DEM investigation and parameter sensitivity analysis of a typical bubbling fluidization process [J]. Journal of Engineering Thermophysics (工程热物理学报), 2013, 34 (6): 1106-1111.
[24]  Navarro H A, de Souza Braun M P. Determination of the normal spring stiffness coefficient in the linear spring-dashpot contact model of discrete element method [J]. Powder Technology, 2013, 246: 707-722.
[25]  Kharaz A H, Gorham D A, Salman A D. An experimental study of the elastic rebound of spheres [J]. Powder Technology, 2001, 120 (3): 281-291.
[26]  Fu J S, Cheong Y S, Reynolds G K, et al. An experimental study of the variability in the properties and quality of wet granules [J]. Powder Technology, 2004, 140 (3): 209-216.
[27]  Müller P, Antonyuk S, Tomas J, et al. Investigations of the Restitution Coefficient of Granules—Micro-Macro-Interaction [M]. Berlin: Springer, 2008: 235-241.
[28]  Xia Zhenyan (夏振炎), Tian Yan (田砚), Jiang Nan (姜楠). Wavelet spectrum analysis on energy transfer of multi-scale structures in wall turbulence [J]. Applied Mathematics and Mechanics (应用数学和力学), 2009, 30 (4): 409-416.
[29]  Wu Yingya (吴迎亚), Lan Xingying (蓝兴英), Gao Jinsen (高金森). Analysis of flow field intermittency and coherent structure of particles based on DEM simulation of gas-solid bubbling bed [J]. CIESC Journal (化工学报), 2014, 65 (7): 2724-2732.
[30]  Goldschmidt M J V, Beetstra R, Kuipers J A M. Hydrodynamic modelling of dense gas-fluidised beds:comparison and validation of 3D discrete particle and continuum models [J]. Powder Technology, 2004, 142 (1): 23-47.
[31]  Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions [M]. Boston: Academic Press, 1994.
[32]  Zhang Yong (张勇), Jin Baoshen (金保升), Zhong Wenqi (钟文琪). Three-dimensional DEM simulation on particle mixing characteristics of spout-fluid bed [J]. Proceedings of the CSEE (中国电机工程学报), 2008, 28 (2): 33-38.
[33]  Sommerfeld M, Tsuji Y, Crowe C T. Multiphase Flows with Droplets and Particles [M]. Boca Raton: CRC Press, 1997: 12-14.
[34]  Wang Jiajun (王嘉骏), Zhang Wenfeng (张文峰), Feng Lianfang (冯连芳), Gu Xueping (顾雪萍). Wavelets analysis of pressure fluctuation in agitated fluidized bed [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2006, 57 (12): 2855-2859.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133