全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

裂化催化剂失活动力学及平衡催化剂活性模型

DOI: 10.11949/j.issn.0438-1157.20141892, PP. 2498-2504

Keywords: 催化裂化,催化剂,失活,动力学,平衡催化剂活性,金属污染,数学模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于催化剂全混流流动状态和呈指数形式的催化剂年龄概率密度函数,经催化剂失活动力学方程推导,确定了关联催化剂碳含量、金属沉积量、催化剂置换率、再生器温度和水蒸气分压的平衡催化剂活性或微反活性模型方程。对工业催化裂化装置操作数据进行模拟计算,确定了催化剂失活模型参数,建立了具有较高模拟计算精度的裂化催化剂失活动力学和平衡催化剂活性模型。比较模型参数大小可知,V沉积对催化剂活性的影响最大,其次是Ni和Fe,Na的影响最小。模型预测结果表明,随着平衡催化剂金属沉积量或碳含量减少,催化剂单耗增大,平衡催化剂活性或微反活性逐渐增大。适当降低再生器温度和催化剂藏量有利于提高平衡催化剂活性。

References

[1]  Chen Junwu (陈俊武), Cao Hanchang (曹汉昌). Catalytic Cracking Technology and Engineering (催化裂化工艺与工程)[M]. Beijing: China Petrochemical Press, 1995: 269-283.
[2]  Cerqueira H S, Caeiro G, Costa L, Ribeiro F R. Deactivation of FCC catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2008, 292 (1/2): 1-13.
[3]  Wallenstein D, Farmer D, Knoell J, Fougret C M, Brandt S. Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method [J]. Applied Catalysis A: General, 2013, 462/463: 91-99.
[4]  Lappas A A, Nalbandian L, Iatridis D K, Voutetakis S S, Vasalos I A. Effect of metals poisoning on FCC products yields: studies in an FCC short contact time pilot plant unit [J]. Catalysis Today, 2001, 65(2/3/4): 233-240.
[5]  Pinto F V, Escobar A S, Oliveira de B G, Lam Y L, Cerqueira H S, Louis B, Tessonnier J P, Su D S, Pereira M M. The effect of alumina on FCC catalyst in the presence of nickel and vanadium [J]. Applied Catalysis A: General, 2010, 388 (1/2): 15-21.
[6]  Francisco H B, Juan Carlos M M, Maria de Lourdes G C, Juan N B, Montserrat G G, Handy B E. Dealumination-aging pattern of REUSY zeolites contained in fluid cracking catalysts [J]. Applied Catalysis A: General, 2003, 240 (1/2): 41-51.
[7]  Escobar A S, Pereira M M, Ricardo D M, Pimenta R D M, Lau L Y, Cerqueira H S. Interaction between Ni and V with USHY and rare earth HY zeolite during hydrothermal deactivation [J]. Applied Catalysis A: General, 2005, 286 (2): 196-201.
[8]  Bazyari A, Khodadadi A A, Hosseinpour N, Mortazavi Y. Effects of steaming-made changes in physicochemical properties of Y-zeolite on cracking of bulky 1,3,5-triisopropylbenzene and coke formation [J]. Fuel Processing Technology, 2009, 90(10): 1226-1233.
[9]  Li Chunyi(李春义), Yuan Qimin(袁起民), Pang Xinmei(庞新梅), Yang Hongyan(杨红燕), Shan Honghong(山红红), Yang Chaohe(杨朝合), Zhang Jianfang(张建芳). Hydrothermal deactivation of USY/ZnO/Al2O3 additive for sulfur removal of FCC gasoline [J]. Chinese Journal of Catalysis(催化学报), 2003, 24(6): 457-464.
[10]  Song Haitao(宋海涛), Zhu Yuxia(朱玉霞), Lu Lijun(卢立军), Zhang Jiushun(张久顺), Da Zhijian(达志坚). The cracking activity and physic-chemical characterization of FCC catalyst and Y zeolites after steam treated [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2005, 21(2): 80-85.
[11]  Chester A W, Stover W A. Steam deactivation kinetics of zeolitic cracking catalysts [J]. Ind. Eng. Chem. Prod. Res. Dev., 1977, 16(4): 285-290.
[12]  Chen N Y, Mitchell T O, Olson D H, et al. Irreversible deactivation of zeolite fluid cracking catalyst (Ⅱ): Hydrothermal stability of catalysts containing NH4Y and rare earth Y [J]. Ind. Eng. Chem. Prod. Res. Dev., 1977, 16(3): 247-252..
[13]  Tan Junjie(谈俊杰), Zhang Jiushun(张久顺), Gao Yongcan(高永灿). A mathematical model for FCC catalyst deactivation [J]. Petroleum Processing and Petrochemicals (石油炼制与化工), 2002, 33(12): 39-43.
[14]  Ren Jie(任杰). Kinetic model of hydrothermal deactivation for catalytic cracking catalyst [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2002, 18(5): 40-46.
[15]  Zou Shengwu(邹圣武), Hou Shuandi(侯栓弟), Long Jun(龙军), Zhou Jian(周健), Sun Tiedong(孙铁栋), Zhang Zhanzhu(张占柱). Kinetic model of catalytic cracking based on olefin reaction mechanism [J]. Journal of Chemical Industry and Engineering (China)(化工学报), 2004, 55(11): 1793-1798.
[16]  Wang Shuyan, Lu Huilin, Gao Jinsen, Xu Chunming, Sun Dan. Numerical predication of cracking reaction of particle clusters in fluid catalytic cracking riser reactors [J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 670-678.
[17]  Li Chenglie(李承烈), Li Xianjun(李贤均), Zhang Guotai(张国泰). Deactivation of Catalyst(催化剂失活)[M]. Beijing: Chemical Industry Press, 1989: 79-94.
[18]  Deng Mingbo(邓铭波), Ren Jie(任杰). Mathematical simulation of catalyst balance activity for catalytic cracking unit [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报: 石油加工), 2005, 21(5): 12-18.
[19]  Wang Rui, Luo Xionglin, Xu Feng. Effect of CO combustion promoters on combustion air partition in FCC under nearly complete combustion [J]. Chinese Journal of Chemical Engineering, 2014, 22(5): 531-537.
[20]  Trujilo C A, Uribe U N, Knops-Gerrits P P, Luis Alfredo O A, Jacobs P A. The mechanism of zeolite Y destruction by steam in the presence of vanadium [J]. Journal of Catalysis, 1997, 168(1): 1-15.
[21]  Tangstad E, Bendiksen M, Myrstad T. Effect of sodium deposition on FCC catalysts deactivation [J]. Applied Catalysis A: General, 1997, 150(1): 85-99.
[22]  Xu Mingting, Liu Xinsheng, Madon R J. Pathways for Y zeolite destruction: the role of sodium and vanadium [J]. Journal of Catalysis, 2002, 207(2): 237-246.
[23]  Wu Ting(吴婷), Chen Hui(陈辉), Lu Shanxiang(陆善祥), Wang Huan(王欢), Meng Lina(孟丽娜), Zhi Xiaobin(支小斌). Effects of sodium and vanadium on Y molecular sieve [J]. Industrial Catalysis (工业催化), 2012, 20(4): 35-39.
[24]  Zhang Le(张乐), Gao Xionghou(高雄厚), Zhang Yanhui(张艳惠), Su Yi(苏怡), Zhang Aiping(张爱萍). Effects of sodium content on physicochemical properties of USY zeolite [J]. Journal of Synthetic Crystals (人工晶体学报), 2014, 43(2): 454-460.
[25]  Jiang Zhongqin(姜仲勤). The origin of Na in feedstock of heavy oil FCC and the Na poisoning of catalyst [J]. Petroleum Refinery (石油炼制), 1989, (8): 1-7.
[26]  Mathieu Y, Corma A, Echard M, Bories M. Single and combined fluidized catalytic cracking (FCC) catalyst deactivation by iron and calcium metal-organic contaminants [J]. Applied Catalysis A: General, 2014, 469: 451-465.
[27]  Tangstad E, Andersen A, Myhrvold E M, Myrstad T. Catalytic behaviour of nickel and iron metal contaminants of an FCC catalyst after oxidative and reductive thermal treatments [J]. Applied Catalysis A: General, 2008, 346(1/2): 194-199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133