Chen Junwu (陈俊武), Cao Hanchang (曹汉昌). Catalytic Cracking Technology and Engineering (催化裂化工艺与工程)[M]. Beijing: China Petrochemical Press, 1995: 269-283.
[2]
Cerqueira H S, Caeiro G, Costa L, Ribeiro F R. Deactivation of FCC catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2008, 292 (1/2): 1-13.
[3]
Wallenstein D, Farmer D, Knoell J, Fougret C M, Brandt S. Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method [J]. Applied Catalysis A: General, 2013, 462/463: 91-99.
[4]
Lappas A A, Nalbandian L, Iatridis D K, Voutetakis S S, Vasalos I A. Effect of metals poisoning on FCC products yields: studies in an FCC short contact time pilot plant unit [J]. Catalysis Today, 2001, 65(2/3/4): 233-240.
[5]
Pinto F V, Escobar A S, Oliveira de B G, Lam Y L, Cerqueira H S, Louis B, Tessonnier J P, Su D S, Pereira M M. The effect of alumina on FCC catalyst in the presence of nickel and vanadium [J]. Applied Catalysis A: General, 2010, 388 (1/2): 15-21.
[6]
Francisco H B, Juan Carlos M M, Maria de Lourdes G C, Juan N B, Montserrat G G, Handy B E. Dealumination-aging pattern of REUSY zeolites contained in fluid cracking catalysts [J]. Applied Catalysis A: General, 2003, 240 (1/2): 41-51.
[7]
Escobar A S, Pereira M M, Ricardo D M, Pimenta R D M, Lau L Y, Cerqueira H S. Interaction between Ni and V with USHY and rare earth HY zeolite during hydrothermal deactivation [J]. Applied Catalysis A: General, 2005, 286 (2): 196-201.
[8]
Bazyari A, Khodadadi A A, Hosseinpour N, Mortazavi Y. Effects of steaming-made changes in physicochemical properties of Y-zeolite on cracking of bulky 1,3,5-triisopropylbenzene and coke formation [J]. Fuel Processing Technology, 2009, 90(10): 1226-1233.
[9]
Li Chunyi(李春义), Yuan Qimin(袁起民), Pang Xinmei(庞新梅), Yang Hongyan(杨红燕), Shan Honghong(山红红), Yang Chaohe(杨朝合), Zhang Jianfang(张建芳). Hydrothermal deactivation of USY/ZnO/Al2O3 additive for sulfur removal of FCC gasoline [J]. Chinese Journal of Catalysis(催化学报), 2003, 24(6): 457-464.
[10]
Song Haitao(宋海涛), Zhu Yuxia(朱玉霞), Lu Lijun(卢立军), Zhang Jiushun(张久顺), Da Zhijian(达志坚). The cracking activity and physic-chemical characterization of FCC catalyst and Y zeolites after steam treated [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2005, 21(2): 80-85.
[11]
Chester A W, Stover W A. Steam deactivation kinetics of zeolitic cracking catalysts [J]. Ind. Eng. Chem. Prod. Res. Dev., 1977, 16(4): 285-290.
[12]
Chen N Y, Mitchell T O, Olson D H, et al. Irreversible deactivation of zeolite fluid cracking catalyst (Ⅱ): Hydrothermal stability of catalysts containing NH4Y and rare earth Y [J]. Ind. Eng. Chem. Prod. Res. Dev., 1977, 16(3): 247-252..
[13]
Tan Junjie(谈俊杰), Zhang Jiushun(张久顺), Gao Yongcan(高永灿). A mathematical model for FCC catalyst deactivation [J]. Petroleum Processing and Petrochemicals (石油炼制与化工), 2002, 33(12): 39-43.
[14]
Ren Jie(任杰). Kinetic model of hydrothermal deactivation for catalytic cracking catalyst [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2002, 18(5): 40-46.
[15]
Zou Shengwu(邹圣武), Hou Shuandi(侯栓弟), Long Jun(龙军), Zhou Jian(周健), Sun Tiedong(孙铁栋), Zhang Zhanzhu(张占柱). Kinetic model of catalytic cracking based on olefin reaction mechanism [J]. Journal of Chemical Industry and Engineering (China)(化工学报), 2004, 55(11): 1793-1798.
[16]
Wang Shuyan, Lu Huilin, Gao Jinsen, Xu Chunming, Sun Dan. Numerical predication of cracking reaction of particle clusters in fluid catalytic cracking riser reactors [J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 670-678.
[17]
Li Chenglie(李承烈), Li Xianjun(李贤均), Zhang Guotai(张国泰). Deactivation of Catalyst(催化剂失活)[M]. Beijing: Chemical Industry Press, 1989: 79-94.
[18]
Deng Mingbo(邓铭波), Ren Jie(任杰). Mathematical simulation of catalyst balance activity for catalytic cracking unit [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报: 石油加工), 2005, 21(5): 12-18.
[19]
Wang Rui, Luo Xionglin, Xu Feng. Effect of CO combustion promoters on combustion air partition in FCC under nearly complete combustion [J]. Chinese Journal of Chemical Engineering, 2014, 22(5): 531-537.
[20]
Trujilo C A, Uribe U N, Knops-Gerrits P P, Luis Alfredo O A, Jacobs P A. The mechanism of zeolite Y destruction by steam in the presence of vanadium [J]. Journal of Catalysis, 1997, 168(1): 1-15.
[21]
Tangstad E, Bendiksen M, Myrstad T. Effect of sodium deposition on FCC catalysts deactivation [J]. Applied Catalysis A: General, 1997, 150(1): 85-99.
[22]
Xu Mingting, Liu Xinsheng, Madon R J. Pathways for Y zeolite destruction: the role of sodium and vanadium [J]. Journal of Catalysis, 2002, 207(2): 237-246.
[23]
Wu Ting(吴婷), Chen Hui(陈辉), Lu Shanxiang(陆善祥), Wang Huan(王欢), Meng Lina(孟丽娜), Zhi Xiaobin(支小斌). Effects of sodium and vanadium on Y molecular sieve [J]. Industrial Catalysis (工业催化), 2012, 20(4): 35-39.
[24]
Zhang Le(张乐), Gao Xionghou(高雄厚), Zhang Yanhui(张艳惠), Su Yi(苏怡), Zhang Aiping(张爱萍). Effects of sodium content on physicochemical properties of USY zeolite [J]. Journal of Synthetic Crystals (人工晶体学报), 2014, 43(2): 454-460.
[25]
Jiang Zhongqin(姜仲勤). The origin of Na in feedstock of heavy oil FCC and the Na poisoning of catalyst [J]. Petroleum Refinery (石油炼制), 1989, (8): 1-7.
[26]
Mathieu Y, Corma A, Echard M, Bories M. Single and combined fluidized catalytic cracking (FCC) catalyst deactivation by iron and calcium metal-organic contaminants [J]. Applied Catalysis A: General, 2014, 469: 451-465.
[27]
Tangstad E, Andersen A, Myhrvold E M, Myrstad T. Catalytic behaviour of nickel and iron metal contaminants of an FCC catalyst after oxidative and reductive thermal treatments [J]. Applied Catalysis A: General, 2008, 346(1/2): 194-199.