全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

碱式碳酸镁催化酚醛聚合制备多孔炭及其CO2吸附性能

DOI: 10.11949/j.issn.0438-1157.20141744, PP. 2565-2572

Keywords: 多孔炭,二氧化碳捕集,碱式碳酸镁,吸附,多孔介质,动态穿透

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用碱式碳酸镁的催化功能及易分解特性,实现间苯二酚、甲醛的快速凝胶,炭化得到孔隙发达的整体式多孔炭(MCM-Mg),其轴向抗压强度达9.4MPa。与普通碳酸盐催化的样品相比,MCM-Mg孔隙更为发达。273K下该系列样品的静态CO2吸附量可达3.49~4.50mmol·g-1(0.1MPa),0.015MPa最高可达1.87mmol·g-1。研究发现,微孔对材料吸附性能起主导作用;MCM-Mg的单位微孔比表面积可吸附7.15μmolCO2,超过了大部分活化法制备的炭材料。多组分动态穿透实验表明,该系列材料可实现CO2/N2的完全分离;材料具有良好的耐水汽性能和循环吸附-脱附性能,室温下经惰性气体吹扫即可实现再生。

References

[1]  Azar C, Lindgren K, Larson E, M?llersten K. Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere [J]. Climatic Change, 2006, 74: 47-79.
[2]  Jin Zhiliang (靳治良), Qian Ling (钱玲), Lü Gongxuan (吕功煊). CO2 chemistry—actuality and expectation [J]. Prog. Chem. (化学进展), 2010, 22 (6): 1102-1115.
[3]  Samanta A, Zhao A, Shimizu G K H, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review [J]. Ind. Eng. Chem. Res., 2012, 51: 1438-1463.
[4]  Zhao Huimin (赵会民), Lin Dan (林丹), Yang Gang (杨刚), Chun Yuan (淳远), Xu Qinhua (须沁华). Adsorption capacity of carbon dioxide on amine modified mesoporous materials with larger pore sizes [J]. Acta Phys. -Chim. Sin. (物理化学学报), 2012, 28 (4): 985-992.
[5]  D'Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials [J]. Angew. Chem. Int. Ed., 2010, 49: 6058-6082.
[6]  Li Liangsha (李亮莎), Wang Keke (王可可), Huang Hongliang (黄宏亮), Yang Qingyuan (阳庆元), Zhang Yi (张轶), Wang Shaohua (王少华), Wu Pingyi (吴平易), Lan Ling (兰玲), Liu Dahuan (刘大欢), Zhong Chongli (仲崇立). Synthesis of exceptional stable Hf-based metal-organic frameworks: characterization, stability and CO2 adsorption performance [J]. CIESC Journal (化工学报), 2014, 65 (5): 1706-1715.
[7]  Liang Hui (梁辉), Liu Zhen (刘振), Li Ping (李平), Yu Jianguo (于建国). CO2 capture by adsorption with carbonaceous materials and electrothermal desorption [J]. CIESC Journal (化工学报), 2010, 61 (4): 879-886.
[8]  Wang L, Huang Z, Yue M, Li M, Wang M, Kang F. Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning [J]. Chem. Eng. J., 2013, 218: 232-237.
[9]  Ma X, Cao M, Hu C. Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture [J]. J. Mater. Chem. A, 2013, 1 (3): 913-918.
[10]  Mahurin S M, Górka J, Nelson K M, Mayes R T, Dai S. Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon [J]. Carbon, 2014, 67: 457-464.
[11]  Xia Y, Mokaya R, Walker G S, Zhu Y. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite [J]. Adv. Energy Mater., 2011, 1 (4): 678-683.
[12]  Wang J, Heerwig A, Lohe M R, Oschatz M, Borcharde L, Kaskel S. Fungi-based porous carbons for CO2 adsorption and separation [J]. J. Mater. Chem., 2012, 22: 13911-13913.
[13]  Sevilla M, Valle-Vigón P, Fuertes A B. N-doped polypyrrole-based porous carbons for CO2 capture [J]. Adv. Funct. Mater., 2011, 21 (14): 2781-2787.
[14]  Hao Guangping (郝广平). Designed synthesis of hierarchical porous carbon monoliths for CO2 capture [D]. Dalian: Dalian University of Technology, 2012.
[15]  Feng Zongjun (冯宗军). Preparation and characterization of carbon aerogel and composite for thermal insulation [D]. Changsha: National University of Defense Technology, 2012.
[16]  Hao G, Li W, Qian D, Wang G, Zhang W, Zhang T, Wang A, Schüth F, Bongard H, Lu A. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents [J]. J. Am. Chem. Soc., 2011, 133 (29): 11378-11388.
[17]  Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C. Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts [J]. Carbon, 2006, 44 (11): 2301-2307.
[18]  Zhang Hengzhong (张衡中). Estimation of standard enthalpies of formation of complex oxide [J]. Nonferrous Metals (有色金属), 1994, 46: 58.
[19]  Yuan Chunhua (袁春华), Li Haimin (李海民). Study on synthetic methods and application of basic magnesium carbonate [J]. Journal of Saltlake Research (盐湖研究), 2005, 13 (2): 40-44.
[20]  Qian D, Lei C, Wang E, Li W, Lu A. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity [J]. ChemSusChem, 2014, 7: 291-298.
[21]  Li Wencui (李文翠). Study on the synthesis, characterization and application of novel carbon aerogels [D]. Dalian: Dalian University of Technology, 2002.
[22]  Barral K. Low-density organic aerogels by double-catalysed synthesis [J]. J. Non-Cryst. Solids, 1998, 225: 46-50.
[23]  Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley P A, Zhao D. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities [J]. Chem. Commun., 2008, 23: 2641-2643.
[24]  Mi Juan (米娟). Preparation and electrochemical performance of heteroatom-doped carbon materials for supercapacitors [D]. Dalian: Dalian University of Technology, 2012.
[25]  Rodrigues L A, Campos T M B, Alvarez-Mendes M O, Coutinho A, Sakane K K, Thim G P. Phenol removal from aqueous solution by carbon xerogel [J]. J. Sol-Gel Sci. Technol., 2012, 63 (2): 202-210.
[26]  Saha D, Deng S. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon [J]. J. Colloid Interface Sci., 2010, 345: 402-409.
[27]  Chandrasekar G, Son W, Ahn W. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption [J]. J. Porous Mat., 2009, 16: 545-551.
[28]  Zubizarreta L, Arenillas A, Pirard J, Pis J J, Job N. Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH [J]. Micropor. Mesopor. Mat., 2008, 115 (3): 480-490.
[29]  Gu J, Kim W, Hwang Y, Huh S. Template-free synthesis of N-doped porous carbons and their gas sorption properties [J]. Carbon, 2013, 56: 208-217.
[30]  Qian D, Lei C, Hao G, Li W, Lu A. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability [J]. ACS Appl. Mater. Interface, 2012, 4 (11): 6125-6132.
[31]  Zhu B, Li K, Liu J, Liu H, Sun C, Snape C E, Guo Z. Nitrogen- enriched and hierarchically porous carbon macro-spheres— ideal for large-scale CO2 capture [J]. J. Mater. Chem. A, 2014, 2: 5481-5489.
[32]  Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture [J]. Energy Environ. Sci., 2011, 4: 1765-1771.
[33]  Liu Z, Du Z, Song H, Wang C, Subhan F, Xing W, Yan Z. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption [J]. J. Colloid Interface Sci. 2014, 416: 124-132.
[34]  Sevilla M, Fuertes A B. CO2 adsorption by activated templated carbons [J]. J. Colloid Interface Sci., 2012, 366: 147-154.
[35]  Wang J, Senkovska I, Oschatz M, Lohe M R, Borcharde L, Heerwig A, Liu Q, Kaskel S. Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture [J]. J. Mater. Chem. A, 2013, 1: 10951-10961.
[36]  Zhao Y, Zhao L, Yao K X, Yang Y, Zhang Q, Han Y. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture [J]. J. Mater. Chem., 2012, 22: 19726-19731.
[37]  Harlick P J E, Tezel F H. An experimental adsorbent screening study for CO2 removal from N2 [J]. Micropor. Mesopor. Mater., 2004, 76: 71-79.
[38]  Liu J, Wang Y, Benin A I, Jakubczak P, Willis R R, LeVan M D. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC [J]. Langmuir, 2010, 26 (17): 14301-14307.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133