全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

热解温度对污泥生物炭稳定性及养分淋溶特性影响

DOI: 10.11949/j.issn.0438-1157.20150253, PP. 2664-2669

Keywords: 市政污泥,热解,生物炭,降解,养分元素

Full-Text   Cite this paper   Add to My Lib

Abstract:

以市政污泥为原料,在300、500、700℃条件下热解制备得到污泥生物炭。采用碱液吸收法测定生物炭在培养环境下的CO2释放速率以表征其降解速率,并采用预测模型计算得到生物炭的半衰期。以去离子水为浸提剂考察了生物炭中可溶性养分含量及其淋溶特性。结果表明:在300~700℃范围内,较高温度下制备的生物炭降解缓慢,稳定性更强,可在自然环境中长期存在,具有更好的固碳效果;较低温度下制备的生物炭中水溶性氮、水溶性钾含量更高,但水溶性磷含量更低;生物炭中养分的淋溶效果与其可溶性养分含量一致,较低温度下制备的生物炭的淋溶液中水溶性氮、水溶性钾含量较高,水溶性磷含量较低。

References

[1]  Peng X, Ye L L, C Wang C H, Zhou H, Sun B. Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China [J]. Soil & Tillage Research, 2011, 112: 159-166.
[2]  Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101: 5222-5228.
[3]  Hossain M K, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar [J]. Journal of Environmental Management, 2011, 92 (1): 223-228.
[4]  Lu H, Zhang W, Wang S, Zhuang L, Yang Y, Qiu R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 137-143.
[5]  Spokas K A. Review of the stability of biochar in soils: predictability of O:C molar ratios [J]. Carbon Management, 2010, 1 (2): 289-303.
[6]  Méndeza A, Terradillosb M, Gascó G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 124-130.
[7]  Topoliantz S, Ponge J-F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics [J]. Biol. Fert. Soils, 2005, 41 (1): 15-21.
[8]  Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresource Technology, 2013, 130: 463-471.
[9]  Méndez A, Gómez A, Paz-Ferreiro J, Gascó G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil [J]. Chemosphere, 2012, 89 (11): 1354-1359.
[10]  Jin H, Arazo R O, Gao J, Capared S, Chang Z. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge [J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 168-175.
[11]  Yuan H R, Lu T, Zhao D D, Huang H Y, Noriyuki K, Chen Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge [J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 284-289.
[12]  Yuan H R, Lu T, Zhao D D, Huang H Y, Noriyuki K, Chen Y. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis [J]. J. Mater. Cycles. Waste Manag., 2013, 15: 357-361.
[13]  Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) [J]. Environ. Sci. Technol., 2010, 44: 1295-1301.
[14]  Zibilske L M. Carbon mineralization//Weaver R W, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, et al. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America Book Series [M]. vol.5. Madison: Soil Science Society America Inc, 1994: 835-864.
[15]  Mukherjee A, Zimmerman A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures [J]. Geoderma, 2013, 193-194: 122-130.
[16]  Wang M C, Huang P M. Ring cleavage and oxidative transformation of pyrogallol catalyzed by Mn, Fe, Al, and Si oxides [J]. Soil Sci., 2000, 165 (12): 934-942.
[17]  Lehmann J, Joseph S. Biochar for Environmental Management: Science and Technology [M]. London: Earthscan Ltd, 2009.
[18]  Bird M I, Wurster C M, Silva P H D, Bass A M, Denys R. Algal biochar-production and properties [J]. Bioresource Technology, 2011, 102 (2): 1886-1891.
[19]  Glaser B, Haumaier L, Guggenberger G, Zech W. The ‘Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften, 2001, 88: 37-41.
[20]  Gaskin J W, Steiner C, Harris K, Das K C, Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE, 2008, 51 (6): 2061-2069.
[21]  Kuhlbusch T A J, Crutzen P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 [J]. Global Biogeochem. Cycles, 1995, 9: 491-501.
[22]  Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review [J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403-427.
[23]  Fowles M. Black carbon sequestration as an alternative to bioenergy [J]. Biomass Bioenergy, 2007, 31: 426-432.
[24]  Wardle D A, Nilsson M C, Zackrisson O. Fire-derived charcoal causes loss of forest humus [J]. Science, 2008, 320: 629.
[25]  Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity [J]. Soil Biology & Biochemistry, 2009, 41: 1301-1310.
[26]  Agrafiotia E, Bourasa G, Kalderisb D, Diamadopoulos E. Biochar production by sewage sludge pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78.
[27]  Cheng C H, Lehmann J, Thies J E, Burton S D, Engelhard M H. Oxidation of black carbon by biotic and abiotic processes [J]. Organic Geochemistry, 2006, 37: 1477-1488.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133