全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

CO2浓度对混溶态(CO2+正己烷)/盐水界面微观特性的影响

DOI: 10.11949/j.issn.0438-1157.20150104, PP. 2601-2606

Keywords: 超临界CO2,CO2地质封存,界面,分子模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

在CO2以超临界状态封存于油气藏时,储层中流体间的界面性质是影响封存效率和封存量的重要因素。利用分子动力学模拟的方法,对330K、20MPa混溶条件下(CO2+正己烷)/NaCl溶液系统的界面微观性质进行了研究,分析了混溶相中CO2摩尔分数变化时,界面处CO2和正己烷的亲水、疏水特性及其影响,为CO2地质封存提供理论依据。研究发现,随着混溶相中CO2摩尔分数的增加,界面厚度及粗糙度增大,分子渗透加深,热波动加剧。界面上CO2与水之间更强的相互作用造成了CO2注入过程中界面张力的降低。CO2表现出类似于表面活性剂的性质,并在CO2摩尔分数为65%(质量分数为50%)时,其界面累积量以及正己烷的驱离量最大。界面处存在特殊的分子微观结构,CO2、水及正己烷分子呈现特殊的排布方式。

References

[1]  Wan X, Song Y, Zhang Y, Nishio M, Zhan Y, Jian W, Shen Y. Research progress of the interfacial tension in supercritical CO2-water/oil system [J]. Energy Procedia, 2013, 37: 6928-6935.
[2]  Liu Chang (刘畅), Lu Xiaohua (陆小华). Carbon reduction pattern in China: comparison of CCS and biomethane route [J]. CIESC Journal (化工学报), 2013, 64 (1): 7-10.
[3]  Ameri A, Kaveh N S, Rudolph E S J, Wolf K H, Farajzadeh R, Bruining J. Investigation on interfacial interactions among crude oil-brine-sandstone rock-CO2 by contact angle measurements [J]. Energy Fuels, 2013, 27: 1015-1025.
[4]  Wang X, Gu Y. Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding processes [J]. Ind. Eng. Chem. Res., 2011, 50:2388-2399.
[5]  Rao D N, Lee J I. Determination of gas-oil miscibility conditions by interfacial tension measurements [J]. J. Colloid Interface Sci., 2003, 262 (2): 474-82.
[6]  Sun C, Chen G. Measurement of interfacial tension for the CO2 injected crude oil + reservoir water system [J]. J. Chem. Eng. Data, 2005, 50: 936-938.
[7]  Sandro R P da Rocha, Keith P Johnson. Molecular structure of the water-supercritical CO2 interface [J]. J. Phys. Chem. B, 2001, 105: 12092-12104.
[8]  Li X, Ross D A, Trusler J P M, Maitland G C, Boek E S. Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures [J]. J. Phys. Chem. B, 2013, 117: 5647-5652.
[9]  Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D. Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface [J]. J. Phys. Chem. B, 2011, 115: 6076-6087.
[10]  Fan Kangnian (范康年). Physical Chemistry (物理化学) [M]. 2nd ed. Beijing: Higher Education Press, 2005: 222.
[11]  Kaminski G A, Friesner R A, Tirado-Rives J, Jorgensen W L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides [J]. J. Phys. Chem. B, 2001, 105: 6474-6487.
[12]  Levitt M, Hirshberg M, Sharon R, Laidig K E, Daggett V. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution [J]. J. Phys. Chem. B, 1997, 101 (25): 5051-5061.
[13]  Nieto-Draghi C, de Bruin T, Perez-Pellitero J, Avalos J B, Mackie A D. Thermodynamic and transport properties of carbon dioxide from molecular simulation [J]. J. Chem. Phys., 2007, 126 (6): 064509.
[14]  Chandrasekhar J, Spellmeyer D C, Jorgensen W L. Energy component analysis for dilute aqueous-solutions of Li+, Na+, F-, and Cl- ions [J]. J. Am. Chem. Soc., 1984, 106 (4): 903-910.
[15]  Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B, Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit [J]. Bioinformatics, 2013, 29: 845-854.
[16]  Berendsen H J C, Postma J P M, Dinola A, Haak J R. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684-3690.
[17]  Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling [J]. J. Chem. Phys., 2007, 126 (1): 014101.
[18]  Ismail A E, Grest G S, Stevens M.J. Capillary waves at the liquid-vapor interface and the surface tension of water [J]. J. Chem. Phys., 2006, 125 (1): 014702.
[19]  Alejandre J, Tildesley D J, Chapela G A. Molecular-dynamics simulation of the orthobaric densities and surface-tension of water [J]. J. Chem. Phys., 1995, 102 (11): 4574-4583.
[20]  Yuet P K, Blankschtein D. Molecular dynamics simulation study of water surfaces: comparison of flexible water models [J]. J. Phys. Chem. B, 2010, 114 (43): 13786-13795.
[21]  Kumagai A, Tomida D, Yokoyama C. Measurements of the liquid viscosities of mixtures of n-butane, n-hexane, and n-octane with squalane to 30 MPa [J]. Int. J. Thermophysics, 2006, 27: 376-393.
[22]  Culcer D, Hu Xuedong, Sarma S D. Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots [J]. Phys. Rev. B, 2010, 82 (20): 205315.
[23]  Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics [J]. J. Mol. Graphics, 1996, 14 (1): 33-38.
[24]  Marcos E P B, Edward M J. Molecular dynamics simulations of CO2 at an ionic liquid interface: adsorption, ordering, and interfacial crossing [J]. J. Phys. Chem. B, 2010, 114 (36): 11827-11837.
[25]  Tewes F, Boury F. Thermodynamic and dynamic interfacial properties of binary carbon dioxide-water systems [J]. J. Phys. Chem. B, 2004, 108: 2405-2412.
[26]  Fan Y, Chen X, Yang L, Cremer P S, Gao Y. On the structure of water at the aqueous/air interface [J]. J. Phys. Chem. B, 2009, 113 (34): 11672-11679.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133