全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

蒸汽凝结过程声压波动信号实验研究

DOI: 10.11949/j.issn.0438-1157.20150080, PP. 2442-2449

Keywords: 凝结,气泡破裂,声压波动信号,气液两相流,传热

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用高速摄像仪和水声换能器研究蒸汽凝结时的声压波动信号和凝结区域的转变。结果表明,随过冷度和蒸汽流量升高分别出现3个不同的凝结区域——体积波动区、过渡区和毛细波区。此外,观察到两种分别对应气泡分裂和破碎的声压波动波形。声压波动信号的峰度存在阶跃变化,且阶跃处与凝结区域转变的阈值接近。幅度谱的低频区域存在频率在150~300Hz的峰值,其可能是由蒸汽体积周期性变化引入。在过渡区和毛细波区发现频率高于7000Hz的峰值,其可能是由气泡突然破碎引入的局部压力高频振荡造成的。蒸汽气泡破碎频率随过冷度和蒸汽流量增加而增加,且与幅度谱中首峰频率接近,误差在±20%以内。

References

[1]  Ju S H, No H C, Mayinger F. Measurement of heat transfer coefficients for direct contact condensation in core makeup tanks using holographic interferometer [J]. Nuclear Engineering and Design, 2000, 199: 75-83.
[2]  Youn D H, Ko K B, Lee Y Y, Kim M H, Bae Y Y, Park J K. The direct contact condensation of steam in a pool at low mass flux [J]. Journal of Nuclear Science and Technology, 2003, 40(10): 881-885.
[3]  Clerx N, van der Geld C W M. Experimental and analytical study of intermittency in direct contact condensation of steam in cross-flow of water//ECI International Conference on Boiling Heat Transfer [C]. Florianopolis, Brazil, 2009.
[4]  Xu Q, Guo L J, Zou S F, Chen J W, Zhang X M. Experimental study on direct contact condensation of stable steam jet in water flow in a vertical pipe [J]. International Journal of Heat and Mass Transfer, 2013, 66: 808-817.
[5]  Wu Xinzhuang (武心壮), Li Wenjun (李文军), Yan Junjie (严俊杰). Research on axial total pressure distributions of sonic steam jet in subcooled water [J]. Nuclear Power Engineering (核动力工程), 2012, 33(6): 76-80.
[6]  Qiu B B, Tang S, Yan J J, Liu J P, Chong D T, Wu X Z. Experimental investigation on pressure oscillations caused by direct contact condensation of sonic steam jet [J]. Exp. Thermal Fluid Sci., 2014, 52: 270-277.
[7]  Qiu B B, Yan J J, Liu J P, Chong D T, Zhao Q B, Wu X Z. Experimental investigation on the second dominant frequency of pressure oscillation for sonic steam jet in subcooled water [J]. Exp. Thermal Fluid Sci., 2014, 58: 131-138.
[8]  Cho S, Chun S Y, Baek W P, Kim Y. Effect of multiple holes on the performance of sparger during direct contact condensation of steam [J]. Exp. Thermal Fluid Sci., 2004, 28: 629-638.
[9]  Takase K, Ose Y, Kunugi T. Numerical study on direct-contact condensation of vapor in cold water [J]. Fusion Engineering and Design, 2002, 63/64: 421-428.
[10]  Gulawani S S, Joshi J B, Shah M S, RamaPrasad CS, Shukla D S. CFD analysis of flow pattern and heat transfer in direct contact steam condensation [J]. Chem. Eng. Sci., 2006, 61: 5204-5220.
[11]  Chan C K, Lee C K B. A regime map for direct contact condensation [J]. International Journal of Multiphase Flow, 1982, 8(1): 11-20.
[12]  Lee S I, No H C. Gravity-driven injection experiments and direct-contact condensation regime map for passive high-pressure injection system [J]. Nuclear Engineering and Design, 1998, 183: 213-234.
[13]  Elperin T, Fominykh A. Map of regimes of pressure oscillations induced by absorption during gas jet injection through a submerged nozzle [J]. Heat and Mass Transfer, 1997, 32: 277-283.
[14]  Petrovic A. Analytical study of flow regimes for direct contact condensation based on parametrical investigation [J]. J. Pressure Vessel Technol., 2005, 127: 20-25.
[15]  Petrovic A, Calay R K, With G. Three-dimensional condensation regime diagram for direct contact condensation of steam injected into water [J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1762-1770.
[16]  Ueno I, Arima M. Behavior of vapor bubble in subcooled pool [J]. Microgravity Science and Technology, 2007, 19(3/4): 128-129.
[17]  Ueno I, Hattori Y, Hosoya R. Condensation and collapse of vapor bubbles injected in subcooled pool [J]. Microgravity Science and Technology, 2011, 23: 73-77.
[18]  Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J. Study of hydrodynamic behaviour of bubble columns and external loop airlift reactors through analysis of pressure fluctuations [J]. Chem. Eng. Sci., 2000, 55: 2957-2973.
[19]  Ajbar A, Al-Masry W A, Ali E M. Prediction of flow regimes transitions in bubble columns using passive acoustic measurements [J]. Chemical Engineering and Processing: Process Intensification, 2009, 48: 101-110.
[20]  Zhang Qing(张擎), Dong Kezeng(董克增), Huang Zhengliang(黄正梁), Wang Jingdai(王靖岱), Yang Yongrong(阳永荣). Mode identification of pool boiling of water by acoustic emission [J]. CIESC Journal (化工学报), 2013, 64(10): 3527-3533.
[21]  Leighton T G., Walton A J. An experimental study of the sound emitted from gas bubbles in a liquid [J]. Eur. J. Phys., 1987, 8: 98-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133