全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

点火源位置对甲烷-空气爆燃超压特征的影响

DOI: 10.11949/j.issn.0438-1157.20141789, PP. 2749-2756

Keywords: 甲烷,爆炸,安全,超压振荡,点火位置

Full-Text   Cite this paper   Add to My Lib

Abstract:

开展了化学恰当比φ=1甲烷-空气预混气在透明方形管道内的爆燃实验研究,改变点火源位置,分析在管道一端闭口一端开口条件下,点火源位置对甲烷-空气预混气爆燃超压特征的影响。实验结果表明:当点火源与闭口端之间距离较小时,时间-超压曲线不发生振荡,随着点火源相对于闭口端距离的增加,超压分别呈微弱等幅振荡、振幅指数增长的振荡,且最大超压峰值随之增加;超压波形与火焰瞬态结构存在密切关联,振荡波形超压峰值的极值点总是位于火焰位置的极值点;当超压发生振荡时,振幅指数增长阶段的振荡周期随时间线性减小,振荡周期与未燃气气柱长度呈现较好相关性;超压振荡的原因在于,泄爆口侧的火焰前沿触发了超压振荡,闭口侧火焰前沿与声波(压力波)在未燃气气柱中相互作用放大了超压振荡。

References

[1]  Xiao H H, Duan Q L, Jiang L, et al. Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube [J]. International Journal of Hydrogen Energy, 2014, 39 (16): 8557-8563.
[2]  Wen Xiaoping (温小萍), Wu Jianjun (武建军), Xie Maozhao (解茂昭). Coupled relationship between flame structure and pressure wave of gas explosion [J]. CIESC Journal (化工学报), 2013, 64 (10): 3872-3877.
[3]  Pierre Q, Olivier V, Thierry P, et al. Large eddy simulation of vented deflagration [J]. Industrial & Engineering Chemistry Research, 2013, 52: 11414-11423.
[4]  Kerampran S, Desbordes D, VeyssièRe B. Study of the mechanisms of flame acceleration in a tube of constant cross section [J]. Combustion Science and Technology, 2000, 158 (1): 71-91.
[5]  Zheng L G, Yu M G, Yu S J, et al. Measurement of flame height by image processing method [J]. Advanced Materials Research, 2011, 301/303 (2): 983-988.
[6]  Petchenko A, Bychkov V, Akkerman V, et al. Flame-sound interaction in tubes with nonslip walls [J]. Combustion and Flame, 2007, 149 (4): 418-434.
[7]  Lowesmith B J, Mumby C, Hankinson G, et al. Vented confined explosions involving methane/hydrogen mixtures [J]. International Journal of Hydrogen Energy, 2011, 36 (3): 2337-2343.
[8]  Feng Changgen (冯长根), Chen Linshun (陈林顺), Qian Xinming (钱新明). Influence of ignition location on explosion overpressure in coal mine blind tunnel [J]. Journal of Safety and Environment (安全与环境学报), 2001, 1 (5): 56-59
[9]  Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34 (4): 499-550.
[10]  Bjerketvedt D, Bakke J R, Wingerden K. Gas explosion handbook [J]. Journal of Hazardous Materials, 1997, 52 (1): 1-150.
[11]  Razus D, Movileanua C, Oancea D. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures [J]. Journal of Hazardous Materials, 2007, 139 (1): 1-8.
[12]  Vishwakarma R K, Ranjan V, Kumar J. Comparison of explosion parameters for methane-air mixture in different cylindrical flameproof enclosures [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 82-87.
[13]  Van D S, Norman F, Verplaetsen F. Influence of the ignition source location on the determination of the explosion pressure at elevated initial pressures [J]. Journal of Loss Prevention in the Process Industries, 2006, 19 (5): 459-462.
[14]  Park D J, Lee Y S. Experimental investigation of explosion pressures and flame propagations by wall obstruction ratios and ignition positions [J]. Korean Journal of Chemical Engineering, 2012, 29 (2): 139-144.
[15]  Blanchard R, Arndt D, Gr?tz R, Scheider S. Effect of ignition position on the run-up distance to DDT for hydrogen-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2011, 24 (2): 194-199.
[16]  Kindracki J, Kobiera A, Rarata G, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2007, 20 (4/5/6): 551-561.
[17]  Bi M S, Dong C J, Zhou Y H. Numerical simulation of premixed methane-air deflagration in large L/D closed pipes [J]. Applied Thermal Engineering, 2012, 40: 337-342.
[18]  Wen X P, Yu M G, Liu Z C, et al. Large eddy simulation of methane–air deflagration in an obstructed chamber using different combustion models [J]. Journal of Loss Prevention in the Process Industries, 2012, 25 (4): 730-738.
[19]  Bychkov V, Akkerman V, Fru G, et al. Flame acceleration in the early stages of burning in tubes [J]. Combustion and Flame, 2007, 150 (4): 263-276.
[20]  Yang J, Mossa F M S, Huang H W, et al. Oscillating flames in open tubes [J]. Proceedings of the Combustion Institute, 2015, 35 (2):2075-2082.
[21]  Ponizy B, Claverie A, Veyssière B. Tulip flame—the mechanism of flame front inversion [J]. Combustion and Flame, 2014, 161 (12): 3051-3062.
[22]  Phylaktou H, Andrews G E. Gas explosions in long closed vessels [J]. Combustion Science and Technology, 1991, 77 (1/2/3): 27-39.
[23]  Searby G. Acoustic instability in premixed flames [J]. Combustion Science and Technology, 1992, 81 (4/5/6): 221-231.
[24]  Zhu C J, Lin B Q, Jiang B Y, et al. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts [J]. Journal of Loss Prevention in the Process Industries, 2013, 26 (4): 851-861.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133